YOLO11改进:轻量化改进 | 单头注意力模块,并行结合全局和局部信息提高准确度| SHViT CVPR2024

🚀🚀🚀引入了一个单头注意力模块,它固有地防止了头部冗余,同时通过并行结合全局和局部信息来提高准确性

🚀🚀🚀如何使用:1)结合C3k2二次创新使用

YOLO11n summary: 319 layers, 2,590,035 parameters, 2,590,019 gradients, 6.4 GFLOPs
YOLO11-C3k2_SHSA summary: 391 layers, 2,468,755 parameters, 2,468,739 gradients, 6.3 GFLOPs

结构图如下:

  ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

包含注意力机制魔改、卷积魔改、检测头创新、损失&IOU优化、block优化&多层特征融合、 轻量级网络设计、25年最新顶会改进思路、原创自研paper级创新等

⭐⭐⭐ 2025年计算机视觉顶会创新点适用于Yolov5、Yolov8、Yolov10等各个Yolo系列,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会AI的学姐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值