🚀🚀🚀引入了一个单头注意力模块,它固有地防止了头部冗余,同时通过并行结合全局和局部信息来提高准确性
🚀🚀🚀如何使用:1)结合C3k2二次创新使用
YOLO11n summary: 319 layers, 2,590,035 parameters, 2,590,019 gradients, 6.4 GFLOPs
YOLO11-C3k2_SHSA summary: 391 layers, 2,468,755 parameters, 2,468,739 gradients, 6.3 GFLOPs
结构图如下:
☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️
包含注意力机制魔改、卷积魔改、检测头创新、损失&IOU优化、block优化&多层特征融合、 轻量级网络设计、25年最新顶会改进思路、原创自研paper级创新等
⭐⭐⭐ 2025年计算机视觉顶会创新点适用于Yolov5、Yolov8、Yolov10等各个Yolo系列,