DeepSeek终于丢了开源第一王座。。。

作者 | 量子位 来源 | 量子位

点击下方卡片,关注“自动驾驶之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

>>自动驾驶前沿信息获取自动驾驶之心知识星球

本文只做学术分享,如有侵权,联系删文

几千人盲投,Kimi K2超越DeepSeek拿下全球开源第一!

歪果网友们直接炸了,评论区秒变夸夸打卡现场:

今天,竞技场终于更新了Kimi K2的排名情况——

开源第一,总榜第五,而且紧追马斯克Grok 4这样的顶尖闭源模型

并且各类单项能力也不差,能和一水儿闭源模型打得有来有回:

  • 连续多轮对话并列第一,o3和Grok 4均为第四;

  • 编程能力第二,和GPT 4.5、Grok 4持平;

  • 应对复杂提示词能力第二,和o3、4o位于同一梯队;

  • ……

甚至眼尖的朋友也发现了,唯二闯入总榜TOP 10的开源模型都来自中国。(DeepSeek R1总榜第8)

当然了,即使抛开榜单不谈,Kimi这款新模型过去一周也确实火热——

K2过去一周真热啊

公开可查战绩包括但不限于下面这些:

从实打实的数据来看,发布这一周里,Kimi K2在开源社区就获得了相当关注度和下载量。

GitHub标星5.6K,Hugging Face下载量近10万,这还不算它在中国社区的应用。


连AI搜索引擎明星创企Perplexity CEO也亲自为它站台,并透露:

Kimi K2在内部评估中表现出色,Perplexity计划接下来基于K2模型进行后训练。

甚至由于访问的用户太多了,逼得Kimi官方也出来发公告:

访问量大+模型体积大,导致API过慢。

……

不过就在一片向好之时,人们关于“Kimi K2采用了DeepSeek V3架构”的质疑声再度升温。

对此,我们也找到了Kimi团队成员关于K2架构的相关回应。

总结下来就是,确实继承了DeepSeek V3的架构,不过后续还有一系列参数调整。

p.s. 以下分享均来自知乎@刘少伟,内容经概括总结如下~

一开始,他们尝试了各种架构方案,结果发现V3架构是最能打的(其他顶多旗鼓相当)

所以问题就变成了,要不要为了不同而不同?

经过深思熟虑,团队给出了否定答案。理由有两点:

一是V3架构珠玉在前且已经经过大规模验证,没必要强行“标新立异”;二是自己和DeepSeek一样,训练和推理资源非常有限,而经过评估V3架构符合相关成本预算。

所以他们选择了完全继承V3架构,并引入适合自己的模型结构参数。

具体而言,K2的结构参数改动有四点:

  • 增加专家数量:团队验证了在激活参数量不变的情况下,MoE总参数增加仍有益于loss下降。

  • 注意力头head数减半:减少head数节省的成本,刚好抵消MoE参数变大带来的开销,且效果影响很小。

  • 只保留第一层Dense:只保留第一层为dense,其余都用MoE,结果对推理几乎无影响。

  • 专家无分组:通过自由路由+动态重排(EPLB)可以应对负载不均衡,同时让专家组合更灵活,模型能力更强。

最终得到的推理方案就是,在相同专家数量下:

虽然总参数增大到1.5倍,但除去通信部分,理论的prefill和decode耗时都更小。即使考虑与通信overlap等复杂因素,这个方案也不会比V3有显著的成本增加。

就是说,这是一种更“精打细算”的结构调优。

而且这种放弃自己的模型架构路线,彻底走DeepSeek路线的做法,也被国内网友评价为“相当大胆”。

来源:知乎网友@蛙哥

OK,以上关于Kimi和DeepSeek架构之争的问题落定后,我们再把目光拉回到这次最新排名。

开源追平or超越闭源ing

一个很明显的趋势是:「开源=性能弱」的刻板印象正在被打破,开源模型已经越来越厉害了。

不仅榜单上的整体排名在上升,而且分数差距也越来越小。

仔细看,模型TOP 10总分均为1400+,开源和闭源几乎可以看成位于同一起跑线。

而且这次拿下开源第一的Kimi K2,总分已经非常接近Grok 4、GPT 4.5等顶尖闭源模型了。

换句话说,以前我们可能还要在模型能力和成本之间作取舍,但随着开源力量的崛起,多思考一秒钟都是对开源的不尊重(doge)。

与此同时,越来越多的行业人士也表达了对开源崛起的判断。

艾伦人工智能研究所研究科学家Tim Dettmers表示:

开源击败闭源将变得越来越普遍。

Perplexity CEO也多次在公开场合表示:

开源模型将在塑造AI能力的全球扩散路径中扮演重要角色。它们对于因地制宜地定制和本地化AI体验至关重要。

而在已经逐渐崛起的开源模型领域,TOP 10中唯二开源、且都是国产模型的含金量还在上升。

参考链接:
[1]https://x.com/lmarena_ai/status/1945866381880373490
[2]https://www.zhihu.com/question/1927140506573435010/answer/1927892108636849910
[3]https://zhuanlan.zhihu.com/p/1928863438324623337

一键三连「点赞」「转发」「小心心」

欢迎在评论区留下你的想法!

—  —

自动驾驶之心

论文辅导来啦

知识星球交流社区

近4000人的交流社区,近300+自动驾驶公司与科研结构加入!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知(大模型、端到端自动驾驶、世界模型、仿真闭环、3D检测、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、大模型,更有行业动态和岗位发布!欢迎加入。

独家专业课程

端到端自动驾驶大模型、VLA、仿真测试、自动驾驶C++、BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、车道线检测、轨迹预测、在线高精地图、世界模型、点云3D目标检测、目标跟踪、Occupancy、CUDA与TensorRT模型部署、大模型与自动驾驶、NeRF、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频

学习官网:www.zdjszx.com

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值