Uva1669交换房子——思维

博客围绕树中结点换房问题展开,给定含n个结点的树,每人换房且不能两人住同一房,求所有人最大路程长度。解题思路是让每条边尽量多走,算出每个边最多走的次数,即取结点子树结点数u和n - u的最小值,统计各边次数乘以边权。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文:https://blog.csdn.net/aozil_yang/article/details/61926727

题意:

给你一棵包括n 个结点的树,每个结点上住着一个人,每个人都要换房子,但不能有两个人 住在同一个房子,求的所有人的最大路程长度?

思路:

成都2011年区域赛的题目:

感觉正解好巧妙:

最优解肯定是让每一个边尽量走更多次数。

那么我们只需要算一下每个边 走的最大次数是多少即可。

比如说a 这个结点的子树里(包括a) 一共有u 个结点, 那么剩下的有 n-u 个结点。令f 是a的父亲。

那么f到a 这个边最多走min(u,n-u)次,因为要么是所有u结点都出去,要么是所有n-u个结点都进来。 取一个最小值即可。

这样统计每个边次数 乘以边权即可。

#include <cstdio>
#include <queue>
#include <vector>
#include <cstring>
#include <algorithm>
#define fi first
#define se second
#define pii pair<int,int>
using namespace std;
const int INF = 0x3f3f3f3f;
typedef long long LL;
const int maxn = 100000+5;
int n,sons[maxn];
LL ans;

vector<pii> G[maxn];
void init(int a){ for(int i = 0; i <= a; ++i) G[i].clear();}

void dfs(int u, int f, int w){
	if(G[u].size() == 1&&G[u][0].fi == f){		// 是叶子 
		sons[u] = 1;
		ans += w;
		return;
	}
	sons[u] = 1;
	for(int i = 0; i < G[u].size(); ++i){
		int v = G[u][i].fi;
		if(v != f){
			dfs(v, u, G[u][i].se);
			sons[u] += sons[v];
		}
	}
	ans += (LL)w * (LL)min(sons[u], n-sons[u]);
}

int main()
{
	//freopen("in.txt","r",stdin);
	int T; scanf("%d",&T);
	int kase = 1;
	while(T--){
		scanf("%d",&n); init(n);
		for(int i = 0; i < n-1; ++i){
			int u,v,w; scanf("%d%d%d",&u,&v,&w);
			G[u].push_back(make_pair(v, w));
			G[v].push_back(make_pair(u, w));
		}
		ans = 0;
		dfs(1, 0, 0);
		printf("Case #%d: %lld\n", kase++, ans<<1);
	}
	return 0;
}

内容概要:本文提出了一种融合多尺度Wavelet模型的跨文化英语交际智能模型系统(FL-DP-Wavelet),旨在通过多模态数据融合、多尺度特征提取与跨文化适应性建模,提升智能系统的文化敏感性和语境理解能力。该模型通过结合小波变换与深度学习优化语言信号的时频特征提取,基于跨文化敏感性发展模型(DMIS)构建文化适应性评估模块,并设计多模态数据融合框架,增强跨文化场景下的语义解析鲁棒性。实验结果显示,系统在跨文化语境下的语义理解准确率提升12.7%,文化适应性评分优于基线模型15.3%。 适合人群:从事跨文化交流、国际商务、外语教育的研究人员和技术开发者,特别是对智能系统在跨文化场景中的应用感兴趣的学者和工程师。 使用场景及目标:①跨文化商务谈判、教育合作和公共外交等场景中,需要提升智能系统的文化敏感性和语境理解能力;②帮助系统实现实时文化适应,减少因文化差异引起的语义误判和非语言行为冲突;③通过多模态数据融合,增强智能系统在复杂跨文化环境中的语义解析能力。 其他说明:该研究不仅提出了新的理论框架和技术路径,还在实际应用中验证了其有效性和优越性。未来将聚焦于小波-Transformer耦合、联邦学习隐私保护和在线学习算法,进一步推动系统向自主文化融合演进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值