水动力模型部分常识

1.水动力模型的分类

        水动力模型按数值方法和空间维度可以分为以下几类:

1.1按数值方法分类

方法​​特点​​典型模型​​应用场景​
​有限差分法 (FDM)​用差分近似导数,计算高效但网格要求严格(需结构化网格)HEC-RAS(一维)、MIKE 21(二维)河道洪水演进、潮汐模拟
​有限体积法 (FVM)​基于守恒律,适用于复杂几何和非结构网格,稳定性好Delft3D、TELEMAC河口、海岸带、溃坝模拟
​有限元法 (FEM)​高精度、适应复杂边界,但计算量大SELFE、OpenFOAM三维海洋环流、水工结构流固耦合
​粒子法 (SPH/LBM)​无网格、适合大变形流动,但计算成本高DualSPHysics(SPH)波浪破碎、泥石流模拟

1.2按空间维度分类

维度​​控制方程​​适用场景​​典型软件​
​一维​圣维南方程组河道流量-水位关系、管网水流HEC-RAS、MIKE 11
​二维​浅水方程(平面二维)洪水淹没、湖泊/河口流动MIKE 21、TELEMAC-2D
​三维​三维Navier-Stokes方程分层流、海洋环流、水工结构精细模拟Delft3D、FVCOM

2.一维二维控制方程详解

2.1一维模型:圣维南方程组

        适用于河道或管网,基于质量守恒和动量守恒:

  • ​连续性方程​​:
    \frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = q

  • 其中:A为过流面积,Q为流量,q为侧向入流。

  • ​动量方程​​:
    \frac{\partial Q}{\partial t} + \frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) + gA\frac{\partial h}{\partial x} + gAS_f = 0
    其中:h为水深,Sf​为摩阻坡度(曼宁公式计算),g为重力加速度。

特点​​:忽略横向和垂向流动,计算高效但无法反映复杂地形影响

2.2 二维模型:浅水方程​

        适用于平面流动(如洪水淹没、湖泊):

  • ​连续性方程​​:
    \frac{\partial H}{\partial t} + \frac{\partial (Hu)}{\partial x} + \frac{\partial (Hv)}{\partial y} = q
    其中:H为水深,u,v为x,y方向流速。

  • ​动量方程(x/y方向)​​:
    \frac{\partial (Hu)}{\partial t} + \nabla \cdot (Hu\mathbf{u}) = -gH\frac{\partial \zeta}{\partial x} + \nu \nabla^2 u - \frac{\tau_b^x}{\rho}\frac{\partial (Hv)}{\partial t} + \nabla \cdot (Hv\mathbf{u}) = -gH\frac{\partial \zeta}{\partial y} + \nu \nabla^2 v - \frac{\tau_b^y}{\rho}

  • 其中:ζ为水位,τb​为底床剪切应力,ν为涡粘系数。

​特点​​:可模拟横向流动,但需处理干湿边界(如洪水进退)

​3. 关键差异与选择建议

  • ​一维 vs 二维​​:
    • 一维适用于长河道或管网(如HEC-RAS),二维适用于淹没分析(如MIKE 21)。
    • 耦合模型(如淮河中游模型)可结合两者优势。
  • ​方法选择​​:
    • ​有限差分法​​:简单高效,但需结构化网格。
    • ​有限体积法​​:守恒性好,适合复杂几何(如Delft3D)。
    • ​有限元法​​:高精度但计算量大(如海洋环流模型)。

​应用示例​​:

  • 洪水预报:一维圣维南方程(HEC-RAS)
  • 海岸工程:二维浅水方程(MIKE 21)
  • 三维分层流:有限体积法(FVCOM)

4.显式(Explicit)与隐式(Implicit)方法

1. 显式方法(Explicit Method)

定义

  • 显式方法是指:在计算下一个时间步的变量时,只用到了当前(或已知)时间步的数据。
  • 就是**“一步一步往前推”**,每一步都只依赖已知的历史信息。

数学表达

以一维热传导或水动力方程为例,采用向前欧拉法(Forward Euler):

h^{n+1}

这里,h^{n} 是当前步,h^{n+1})是下一步,右侧只涉及已知的h^{n} 。

优点

  • 简单,易于编程实现。
  • 计算量小,速度快。

缺点

  • 稳定性条件苛刻(CFL条件),时间步长Δt必须足够小,否则解会发散或振荡。
  • 大规模或复杂问题下,效率受限。

2. 隐式方法(Implicit Method)

定义

  • 隐式方法是指:在计算下一个时间步的变量时,公式中既有已知量,也有未知的下一个时间步量。
  • 通常需要解一个代数方程组(甚至是非线性的)。

数学表达

以后退欧拉法(Backward Euler)为例:

h^{n+1}h^{n+1}

右侧的 (f) 依赖于未知的h^{n+1}——需要求解(迭代)才能得到结果。

优点

  • 无条件稳定(对绝大多数线性问题),时间步长可以较大。
  • 适合快速推进大规模或刚性问题。

缺点

  • 每一步都要解方程组,编程复杂,计算量大。

3. 半隐式(Crank-Nicolson等混合方法)

  • 既用当前步,也用下一步的量(如加权平均),兼顾部分两者优点。

5.典型模型与方法对照表

模型名称维度数值方法网格类型时间格式应用场景
HEC-RAS 1D/2D1D/2DFDM/FVM规则/不规则显/隐式河流/洪水
Delft3D2D/3DFVM规则/不规则隐式河口/海洋
LISFLOOD-FP2DFDM/FVM规则显式洪水/平原
TELEMAC2D/3DFEM不规则隐式海洋/洪水
MIKE 21/32D/3DFDM/FVM/FEM规则/不规则隐式湖泊/海洋
ANUGA2DFVM不规则显式洪水/海啸
SWMM1DFDM规则显式城市排水
DualSPHysics3DSPH无网格显式自由面/溃坝

个人笔记,如有不全或错误,还望海涵。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值