神经网络剪枝行不行?-【Network Pruning发展近况】

当前神经网络剪枝领域的研究缺乏标准化基准和度量,导致比较不同剪枝技术困难。尽管剪枝能有效压缩网络而不牺牲精度,但多数论文缺乏相互比较,评估指标、方法和超参数各异。剪枝涉及网络结构、评分、调度和微调策略的选择,旨在平衡模型效率和质量。然而,评估指标如FLOPs和精度并不能全面反映实际性能。未来需要更多直接对比和标准化实验来推进剪枝技术的发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

WHAT IS THE STATE OF NEURAL NETWORK PRUNING?

Source:https://arxiv.org/abs/2003.03033

一、摘要:

缺乏标准化的基准和度量标准,以至于很难比较不同的剪枝技术,提出具体的补救措施,并引入ShrinkBench,一个框架来促进修剪方法的标准化评估。

尝试去回答:

哪种技术能最好地兼顾精确性和效率?

在特定的架构或数据集上,是否有最有效的策略?

哪种高级设计选择是最有效的?

二、存在的问题

通过调研81篇论文。(语料库包括2010年以来发表的79篇剪剪论文和两篇经典论文。)

发现,的确,基于其参数大小的剪枝实质上压缩了网络而不降低精度,而且许多剪枝方法的性能优于随机剪枝。

但是,

很少有论文互相比较,而且论文之间的方法是不一致,自己很难进行比较。

例如,四分之一的论文与没有其他修剪方法相比,一半的论文与最多一种其他方法相比,还有几十种方法从未被任何后续工作进行过比较。数据集/网络对甚至在三分之一的论文中都没有出现,评估指标差异很大,超参数和其他混杂因素也各不相同或未指定。

三、什么是网络剪枝?

剪枝算法的一般流程:

首先训练网络的收敛性。然后对网络中的每个参数或结构元素给出一个分数,并根据这些分数对网络进行剪枝。修剪会降低网络的准确性,因此需要进一步训练(称为微调)来恢复。修剪和微调的过程通常要重复多次,从而逐渐减小网络的规模。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值