n个结点的二叉树一共有多少种形态

本文探讨了二叉树形态的数量与Catalan数之间的联系。对于有n个节点的二叉树,当n大于等于2时,其形态数可以通过Catalan数的公式来计算。博客详细解释了如何利用递归和组合数学的方法理解这一关系,并介绍了Catalan数在计算机科学中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

记n个节点的二叉树形态个数为A[n]

1)0个节点的二叉树只有1种形态,A[0]=0;1个节点的二叉树只有1种形态,A[1]=1

2)n个节点(n>=2)的二叉树有A[n]={\sum_{m=0}^{n-1}}(A[m]+A[n-1-m]),求和的每一项,分别表示根的左子树为m个节点、右子树为 n-1-m个节点的情况。(总共n个节点,左子树m个节点,根节点有1个,那么右子树的节点数为n-1-m个)

刚好就是catalan数,直接用catalan数的公式:h(n)=C_{2n}^{n} /(n+1)=(2n)!/n!*(n+1)!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值