# 自动寻找最优参数
from sklearn.linear_model import LogisticRegression as LR
from sklearn.model_selection import GridSearchCV
# 参数设置
params = {'C':[0.0001, 1, 100, 1000],
'max_iter':[1, 10, 100, 500],
'class_weight':['balanced', None],
'solver':['liblinear','sag','lbfgs','newton-cg']
}
# 模型选择,这里选择了LR逻辑回归模型
model = LR()
clf = GridSearchCV(model,param_grid=params,cv=10) # model:模型,params:给的参数选项,cv:十则交叉验证?
clf.fit(x1_train,y1_train) # 带入自变量和因变量进行训练
model = LR(**clf.best_params_) # clf.best_params_:把刚刚找到的参数带进LR模型
model.fit(x2_train,y2_train) # 训练模型
clf.best_params_ # 查看最佳参数组合
sklearn自动调参数
最新推荐文章于 2024-04-18 20:50:00 发布