sklearn自动调参数

# 自动寻找最优参数
from sklearn.linear_model import LogisticRegression as LR
from sklearn.model_selection import GridSearchCV

# 参数设置
params = {'C':[0.0001, 1, 100, 1000],
          'max_iter':[1, 10, 100, 500],
          'class_weight':['balanced', None],
          'solver':['liblinear','sag','lbfgs','newton-cg']
         }
# 模型选择,这里选择了LR逻辑回归模型
model = LR()
clf = GridSearchCV(model,param_grid=params,cv=10) # model:模型,params:给的参数选项,cv:十则交叉验证?

clf.fit(x1_train,y1_train) # 带入自变量和因变量进行训练

model = LR(**clf.best_params_) # clf.best_params_:把刚刚找到的参数带进LR模型
model.fit(x2_train,y2_train) # 训练模型

clf.best_params_ # 查看最佳参数组合

在这里插入图片描述

再来个SVM模型找参数的示例:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值