笔面试准备(1)——算法刷题之Catalan数问题

本文介绍了Catalan数的概念及其在算法面试中的应用,包括括号匹配、矩阵连乘、买票找零等场景。通过递推公式解析了Catalan数的计算方法,并列举了在leetcode上的相关算法题型,如不同二叉搜索树的构建。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在leetcode上刷题的过程中,总会碰到有关Catalan数相关的问题,对此根据百度百科,做了一点小结,并且有leetcode上的题型以及解决方案🤔——

起源介绍

根据百度百科介绍,卡特兰数又称卡塔兰数,英文名Catalan number,是组合数学中一个常出现在各种计数问题中出现的数列。
以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)的名字来命名,其前几项为(从第零项开始) :

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845,
35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650,
1289904147324, 4861946401452, ...

原理

设 h ( n ) 为 c a t a l a n 数 的 第 n + 1 项 , 令 h ( 0 ) = 1 , h ( 1 ) = 1 , c a t a l a n 数 满 足 递 推 式 : h ( n ) = h ( 0 ) ∗ h ( n − 1 ) + h ( 1 ) ∗ h ( n − 2 ) + ⋅ ⋅ ⋅ + h ( n − 1 ) ∗ h ( 0 ) ( n > = 2 ) 例 如 : h ( 2 ) = h ( 0 ) ∗ h ( 1 ) + h ( 1 ) ∗ h ( 0 ) = 1 ∗ 1 + 1 ∗ 1 = 2 h ( 3 ) = h ( 0 ) ∗ h ( 2 ) + h ( 1 ) ∗ h ( 1 ) + h ( 2 ) ∗ h ( 0 ) = 1 ∗ 2 + 1 ∗ 1 + 2 ∗ 1 = 5 设h(n)为catalan数的第n+1项,令h(0)=1,h(1)=1,catalan数满足递推式:\\ h(n)= h(0)*h(n-1)+h(1)*h(n-2) + \cdot\cdot\cdot + h(n-1)*h(0) (n>=2) \\ 例如: h(2)=h(0)*h(1)+h(1)*h(0)=1*1+1*1=2\\ h(3)=h(0)*h(2)+h(1)*h(1)+h(2)*h(0)=1*2+1*1+2*1=5 h(n)catalann+1h(0)=1,h(1)=1catalanh(n)=h(0)h(n1)+h(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值