Python Scrapy框架下,从0开始全流程爬虫(NBA球员数据)

该博客介绍了如何使用Python的Scrapy框架从头开始构建一个爬虫项目,专注于抓取NBA球员数据。首先,通过终端创建Scrapy项目和启动文件,接着定义爬虫逻辑,包括导入所需库、设置参数和构建URL生成方法。然后,创建了两个管道类,分别用于处理图片和导出数据到Excel。在设置好items和管道优先级后,运行爬虫,最终得到了包含球员数据的Excel表格和下载的图片。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

准备工作:

创建Scrapy项目,采用终端命令行方式进行
scrapy startproject nbaSpider
创建scrapy启动文件run_spider
创建命令行(nbaplayer为爬虫名称)
from scrapy import cmdline

cmdline.execute('scrapy crawl nbaplayer'.split()) # 启动爬虫

开始编写脚本

导入第三方库
import re
import scrapy #导入模块
设置参数
class NBAPlayersSpider(scrapy.Spider):
    name = "nbaplayer" # 爬虫名字
    allowed_domain = ['stat-nba.com'] # 爬虫域名
    start_urls = ['http://www.stat-nba.com/player/1.html'] # 起始地址
创建单个方法
    def parse(self, response, **kwargs):
            # 单个球员数据
            item = NbaspiderItem()
            player_name = response.xpath('//*[@id="background"]/div[4]/div[2]/text()').extract_first()
            item['player_name_A'] = response.xpath('//*[@id="back
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值