自动驾驶感知算法实战3——自动驾驶2D和3D视觉感知算法概述

本文详细介绍了自动驾驶中的2D和3D视觉感知算法,包括目标检测、跟踪和语义分割。在2D感知中,重点讨论了两阶段检测(如Faster R-CNN和Cascade R-CNN)、单阶段检测(如YOLOv3)、无Anchor检测(如CenterNet)和Transformer检测(如DETR)。在3D感知方面,探讨了单目3D目标检测的几种方法,如Pseudo-LiDAR、几何约束和直接生成3DBox。此外,还介绍了单目和双目的深度估计技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自动驾驶感知算法实战专栏:https://blog.csdn.net/charmve/category_12097938.html

导读

环境感知是自动驾驶的第一环,是车辆和环境交互的纽带。一个自动驾驶系统整体表现的好坏,很大程度上都取决于感知系统的好坏。目前,环境感知技术有两大主流技术路线:

①以视觉为主导的多传感器融合方案,典型代表是特斯拉;

②以激光雷达为主导,其他传感器为辅助的技术方案,典型代表如谷歌、百度等。

我们将围绕着环境感知中关键的视觉感知算法进行介绍,其任务涵盖范围及其所属技术领域如下图所示。我们在下文分别梳理了2D和3D视觉感知算法的脉络和方向。

在这里插入图片描述

一、2D视觉感知

本节我们先从广泛应用于自动驾驶的几个任务出发介绍2D视觉感知算法,包括基于图像或视频的2D目标检测和跟踪,以及2D场景的语义分割。近些年,深度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Charmve

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值