【论文笔记】Improving Person Re-identification by Attribute and Identity Learning

该论文提出了Attribute-Person Recognition (APR) 网络,通过结合全局特征的行人重识别(Re-ID)和局部特征的属性识别(Attribute recognition),在Resnet-50基础上构建多任务学习模型。APR网络包含一个ID分类损失和多个属性预测损失,通过λ参数平衡两者。实验证明,属性识别可以提高Re-ID的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Improving Person Re-identification by Attribute and Identity Learning

论文链接
1.摘要&介绍
(1)Re-ID:全局特征,Attribute recognition:局部特征。将这两个方面融合形成新的网络APR,在CNN的基础结构上改进。
(2)Person Re-ID是在非重叠相机下找到查询行人;Attribute recognition是预测一张图像出现的属性。
(3)与之前研究的不同之处:1) 大多方法使用attribute加强元组或三元组之间的联系。历史上,这种方法的出现是因为数据集通常每个行人身份只提供两张图像。但是最近的数据集比如Market-1501和DukeMTMC-reID对每一个类都提供了大量的训练样例。并且classification模型的效果比siamese模型的效果更好。这篇文章因此使用classification CNN模型训练Multi-TASK网络。2)我们试验看re-ID是否能提高attribute recognition的准确度。这篇文章我们主要关注ID-level(人本身)的属性而不是instance-level(人在特定时刻,如打电话、骑车等等)的属性。
(4)这是第一次为Re-ID将attribute融入classification CNN模型。网络基于两条baseline网络创建,一条Re-ID,另一条attribute recognition。
2.相关的工作
(1)CNN-based person re-ID
①重识别领域被基于CNN的算法支配,分为两种:深度度量学习(deep metric learning) &深度表示学习(deep representat

Deep person re-identification is the task of recognizing a person across different camera views in a surveillance system. It is a challenging problem due to variations in lighting, pose, and occlusion. To address this problem, researchers have proposed various deep learning models that can learn discriminative features for person re-identification. However, achieving state-of-the-art performance often requires carefully designed training strategies and model architectures. One approach to improving the performance of deep person re-identification is to use a "bag of tricks" consisting of various techniques that have been shown to be effective in other computer vision tasks. These techniques include data augmentation, label smoothing, mixup, warm-up learning rates, and more. By combining these techniques, researchers have been able to achieve significant improvements in re-identification accuracy. In addition to using a bag of tricks, it is also important to establish a strong baseline for deep person re-identification. A strong baseline provides a foundation for future research and enables fair comparisons between different methods. A typical baseline for re-identification consists of a deep convolutional neural network (CNN) trained on a large-scale dataset such as Market-1501 or DukeMTMC-reID. The baseline should also include appropriate data preprocessing, such as resizing and normalization, and evaluation metrics, such as mean average precision (mAP) and cumulative matching characteristic (CMC) curves. Overall, combining a bag of tricks with a strong baseline can lead to significant improvements in deep person re-identification performance. This can have important practical applications in surveillance systems, where accurate person recognition is essential for ensuring public safety.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值