Python3——斐波那契数列

本文探讨了三种计算斐波那契数列第n项的方法:递归法、记忆化递归法和动态规划。递归法存在重复计算问题,记忆化递归法通过存储中间结果优化了时间复杂度,但空间复杂度较高。动态规划通过一维数组实现了空间优化,但可进一步简化为仅使用三个变量的空间复杂度。最后,强调了对结果取模以防止大数越界的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、题目描述
题目来自剑指Offer 10-I.难度简单。
写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下:

F(0) = 0,   F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.

斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1:

输入:n = 2
输出:1

示例 2:

输入:n = 5
输出:5

提示:

0 <= n <= 100

二、题目解析
斐波那契数列的定义是f(n)=f(n-1)+f(n-2),生成第n向的做法有以下三种:

1. 递归法

  • 原理:把f(n)的问题拆分成f(n-1)和f(n-2)两个子问题计算,并递归,终止条件是f(0)和f(1)。
  • 缺点:需要进行重复大量的计算,例如f(n) 和 f(n - 1)f(n−1) 两者向下递归需要 各自计算 f(n - 2)f(n−2) 的值。

2. 记忆化递归法

  • 原理:在递归的基础上,新建一个长度为n的数组,用于在递归时存储f(0)到f(n)的数值,每次递归前,先查看数组内有没有需要的数字,这样可以避免重复的递归计算。
  • 缺点:需要使用O(N)的额外空间

3. 动态规划

  • 原理:以斐波那契数列性质为转移方程f(n)=f(n-1)+f(n-2)
  • 状态定义:设dp为一维数组,其中dp[i]的值代表斐波那契数列的第i个数字
  • 转移方程:dp[i]=dp[i-1]+dp[i-2],对应数列f(n)=f(n-1)+f(n-2)
  • 初始状态:dp[0]=0,dp[1]=1,即初始化前两个数字
  • 返回值:dp[n],即斐波那契数列的第n个数字。

三、参考代码

#递归法
#超出时间限制
class Solution:
    def fib(self, n: int) -> int:
        # 递归的终止条件
        if
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值