一、题目描述
题目来自剑指Offer 10-I.难度简单。
写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下:
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入:n = 2
输出:1
示例 2:
输入:n = 5
输出:5
提示:
0 <= n <= 100
二、题目解析
斐波那契数列的定义是f(n)=f(n-1)+f(n-2),生成第n向的做法有以下三种:
1. 递归法
- 原理:把f(n)的问题拆分成f(n-1)和f(n-2)两个子问题计算,并递归,终止条件是f(0)和f(1)。
- 缺点:需要进行重复大量的计算,例如f(n) 和 f(n - 1)f(n−1) 两者向下递归需要 各自计算 f(n - 2)f(n−2) 的值。
2. 记忆化递归法
- 原理:在递归的基础上,新建一个长度为n的数组,用于在递归时存储f(0)到f(n)的数值,每次递归前,先查看数组内有没有需要的数字,这样可以避免重复的递归计算。
- 缺点:需要使用O(N)的额外空间
3. 动态规划
- 原理:以斐波那契数列性质为转移方程f(n)=f(n-1)+f(n-2)
- 状态定义:设dp为一维数组,其中dp[i]的值代表斐波那契数列的第i个数字
- 转移方程:dp[i]=dp[i-1]+dp[i-2],对应数列f(n)=f(n-1)+f(n-2)
- 初始状态:dp[0]=0,dp[1]=1,即初始化前两个数字
- 返回值:dp[n],即斐波那契数列的第n个数字。
三、参考代码
#递归法
#超出时间限制
class Solution:
def fib(self, n: int) -> int:
# 递归的终止条件
if