Description
HH有一串由各种漂亮的贝壳组成的项链。HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的含义。HH不断地收集新的贝壳,因此, 他的项链变得越来越长。有一天,他突然提出了一个问题:某一段贝壳中,包含了多少种不同 的贝壳?这个问题很难回答。。。因为项链实在是太长了。于是,他只好求助睿智的你,来解 决这个问题。
Input
第一行:一个整数N,表示项链的长度。 第二行:N个整数,表示依次表示项链中贝壳的编号(编号为0到1000000之间的整数)。 第三行:一个整数M,表示HH询问的个数。 接下来M行:每行两个整数,L和R(1 ≤ L ≤ R ≤ N),表示询问的区间。
Output
M行,每行一个整数,依次表示询问对应的答案。
Sample Input
6
1 2 3 4 3 5
3
1 2
3 5
2 6
1 2 3 4 3 5
3
1 2
3 5
2 6
Sample Output
2
2
4
2
4
HINT
对于20%的数据,N ≤ 100,M ≤ 1000;
对于40%的数据,N ≤ 3000,M ≤ 200000;
对于100%的数据,N ≤ 50000,M ≤ 200000。
Source
【题解】没有修改的操作,可以进行离线处理。
按照左端点排序了之后,将所有第一次出现的数字都记为1,其余记为0。同时要另存出每一个数下一个与它相同的数的出现的位置。
头指针首先指向开头,之后后移。如果头指针遇到了某一个区间的左端点(排序后)就查询这个区间右端点的前缀和,即为当前区间的种类数。需要注意的是,一旦头指针移动过后,相应的点如果为1的话应该清零,然后将下一个和它数字相同的位置置1,这样就保证了之前的点对后面的点没有影响。
算法的正确性是显而易见的。求前缀和的话树状数组更方便,线段树也可以。
【代码】
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define N 50005
#define maxn 200005
#define MAXN 1000005
using namespace std;
struct hp{
int l,r,num;
}que[maxn];
int next[N],head[MAXN],a[N],A[N],c[N],Ans[maxn];
bool b[MAXN];
int n,m,ANS,j;
inline int in(){
int x=0; char ch=getchar();
while (ch<'0'||ch>'9') ch=getchar();
while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x;
}
int cmp(hp a,hp b){
return a.l<b.l;
}
void add(int loc,int value){
for (int i=loc;i<=n;i+=i&(-i))
c[i]+=value;
}
int query(int loc){
int ans=0;
for (int i=loc;i>0;i-=i&(-i))
ans+=c[i];
return ans;
}
int main(){
n=in();
for (int i=1;i<=n;++i)
a[i]=in();
m=in();
for (int i=1;i<=m;++i)
que[i].l=in(),que[i].r=in(),que[i].num=i;
sort(que+1,que+m+1,cmp);
for (int i=n;i>=1;--i){
if (head[a[i]]!=-1)
next[i]=head[a[i]];
head[a[i]]=i;
}
for (int i=1;i<=n;++i)
if (!b[a[i]]){
b[a[i]]=true; A[i]=1;
}
for (int i=1;i<=n;++i)
add(i,A[i]);
int j=1;
while (j<=m&&que[j].l==1){
ANS=query(que[j].r);
Ans[que[j].num]=ANS;
j++;
}
for (int i=2;i<=n;++i){
add(i-1,-1);
if (next[i-1]) add(next[i-1],1);
while (j<=m&&que[j].l==i){
ANS=query(que[j].r);
Ans[que[j].num]=ANS;
j++;
}
}
for (int i=1;i<=m;++i)
printf("%d\n",Ans[i]);
}