[Codeforces398B]Painting The Wall(期望dp)

探讨了在n*n的网格中随机选择格子进行涂色的问题,直到每一行和每一列至少有一个格子被涂色为止。通过动态规划的方法求解了完成涂色过程所需的期望时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

传送门
题意:
一个人粉刷n*n的墙,每一次随机选择一个格子染色,每一行和每一列都至少染了一个的时候结束,每染一个花费1的时间。求结束时间的期望。

题解

令f(i,j)表示染了i行,j列到结束的期望
转移方程很显然
f(i,j)=(i/n)* (j/n) * (f(i,j)+1)+(i/n) * (1-j/n) * (f(i,j+1)+1)+(1-i/n) * (j/n) * (f(i+1,j)+1)+(1-i/n) * (1-j/n) * (f(i+1,j+1)+1)
移项化简即可

代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
#define N 2005

int n,m,x,y,hang[N],lie[N];
double f[N][N];

int main()
{
    scanf("%d%d",&n,&m);
    for (int i=1;i<=m;++i)
    {
        scanf("%d%d",&x,&y);
        hang[x]=1,lie[y]=1;
    }
    x=0,y=0;for (int i=1;i<=n;++i) x+=hang[i],y+=lie[i];
    for (int i=n;i>=0;--i)
        for (int j=n;j>=0;--j)
        {
            if (i==n&&j==n) continue;
            double I=(double)i/(double)n,J=(double)j/(double)n;
            f[i][j]+=(f[i][j+1]+1.0)*I*(1.0-J);
            f[i][j]+=(f[i+1][j]+1.0)*(1.0-I)*J;
            f[i][j]+=(f[i+1][j+1]+1.0)*(1.0-I)*(1.0-J);
            f[i][j]+=I*J;
            f[i][j]/=(1.0-I*J);
        }
    printf("%.10lf\n",f[x][y]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值