本篇我们将主要介绍如何使用 LangChain 连接 CnosDB 数据库,实现使用自然语言和数据库的交流。
大模型等的相关话题已经霸榜半年有余,在讨论关注之余,CnosDB技术团队将大模型与人工智能相关技术与数据库开发与实践进行融合。继CnosDB全面整合TensorFlow(使用 CnosDB 与 TensorFlow 进行时间序列预测)与将Copilot与Cursor应用于生产实践(Coding With AI: Copilot与Cursor)之后,近期CnosDB技术团队将CnosDB与LangChain进行了生态融合,支持用户通过LangChain框架使用自然语言进行相关的时间序列数据查询。CnosDB与LangChain集成的示例请戳:(CnosDB | 🦜️🔗 Langchain)
因为支持标准SQL的生态,也使CnosDB成为全球第一个接入LangChain生态的时序数据库。在整合LangChain框架并接入GPT之后,客户可以提出类似于“最近一小时北京各个气象观察站的平均温度?”或者“这个月上海的最高气温与最低气温是多少?”等相关问题,不用编写任何SQL,从而轻松从数据库中取得相关的查询结果。
简介CnosDB与LangChain
CnosDB 是一款高性能、高压缩率、高易用性的开源分布式时序数据库。主要应用场景为物联网、工业互联网、车联网和IT运维。所有代码均已在 GitHub 开源。
它具有以下特性:
-
高性能:CnosDB 解决了时间序列膨胀问题,理论上支持时间序列无上限,支持沿时间线的聚合查询,包括按等时间间隔划分窗口的查询、按某列枚举值划分窗口的查询、按相邻时序记录的时间间隔长度划分窗口。具备对最新数据的缓存能力,并且可以配置缓存空间,能够高速获取最新数据。
-
简单易用:CnosDB 提供清晰明了的接口,简单的配置项目,支持标准 SQL ,轻松上手,与第三方工具生态无缝集成,拥有便捷的数据访问功能。支持 schemaless ("无模式")的写入方式,支持历史数据补录(含乱序写入)。
-
云原生:CnosDB 有原生的分布式设计、数据分片和分区、存算分离、Quorum 机制、Kubernetes 部署和完整的可观测性,具有最终一致性,能够部署在公有云、私有云和混合云上。提供多租户的功能,有基于角色管理的权限分配。支持计算层无状态增减节点,储存层水平扩展提高系统存储容量。