向量数据库入门到精通(二)向量数据库的发展历程,为什么需要向量数据库?

二、向量数据库的发展

实事上,向量数据库已经存在相当长一段时间了,从早期的向量空间模型,到深度学习时代的高维数据处理工具,再到生成式AI驱动的基础设施,其发展始终围绕高效存储、快速检索与多模态融合展开。未来,随着算法优化与行业落地的深化,向量数据库将成为AI时代的核心数据枢纽

1、萌芽阶段(20世纪60年代-2010年代初)

理论基础

向量数据库的起源可追溯至20世纪60年代的向量空间模型(Vector Space Model),用于文本检索(如早期的Lucene)。此时,向量主要用于表示文档或关键词的语义关系。

早期工具

2000年代初,随着深度学习的兴起,图像、音频等非结构化数据的向量化需求增加,但缺乏高效存储和检索工具。Facebook于2017年开源的FAISS(Facebook AI Similarity Search)成为早期代表性项目,专注于高维向量的相似性搜索。

2、技术突破(2012-2019年)

深度学习推动需求

2012年深度神经网络的突破性进展(如AlexNet)催生了大规模高维向量数据(如图像嵌入、文本Embedding),传统数据库难以处理此类数据的存储与相似性检索。

算法与索引优化

近似最近邻(ANN)算法(如HNSW、IVFPQ、LSH)的提出,显著提升了高维向量搜索效率。

开源项目(如FAISS、Annoy)和标准化数据库(如Elasticsearch、PostgreSQL)逐步集成向量特性,但性能和适用场景仍有局限。

独立产品出现

2019年起,Milvus、Pinecone等独立向量数据库开始发展,专注于高维向量的存储与检索优化。

3、AI驱动应用普及(2020-2023年)

生成式AI引爆市场

2022年ChatGPT的横空出世,使向量数据库从幕后走向台前。其作为RAG(检索增强生成)的核心组件,为大模型提供外部知识库支持,解决“幻觉”问题并提升生成质量。

云厂商入场

云服务商(如腾讯云、阿里云、AWS)推出原生向量数据库(如Tencent Cloud VectorDB),结合分布式架构与AI算法优化,推动规模化应用。

多模态融合

向量数据库开始支持文本、图像、音频等多模态数据的统一处理,满足复杂场景需求(如智能推荐、安防监控)。

4、发展趋势与挑战

技术演进

  • 混合查询能力:支持标量-向量混合检索(如结合精确匹配与相似度搜索)。
  • 索引结构优化:HNSW、KD-Tree等索引结合分布式架构,提升亿级向量的处理效率。
  • 实时性增强:动态索引更新与分布式事务管理成为研究热点。

市场格局

  • 开源与商业化并行:开源项目(如FAISS)推动技术普及,企业级全托管服务(如腾讯云VectorDB)降低部署门槛。
  • 渗透传统行业:从AI领域扩展至金融(风控)、医疗(影像诊断)、制造(质检)等场景。

挑战与瓶颈

  • 存储成本高:高维向量数据存储需求大,需平衡精度与成本。
  • 实时更新难题:动态数据场景下,索引构建与一致性维护仍需突破。

三、为什么需要向量数据库?

回答这个问题,我们需要了解向量数据库的主要优势有哪些,他解决了传统数库的哪些痛点,以及与传统数据库的主要差异。

1、向量数据库的优势

  • 性能:针对相似性搜索进行了优化,即使在高维空间中也能快速检索相关数据。
  • 灵活性:能够有效管理图像、视频和文本等非结构化和半结构化数据。
  • 可扩展性:旨在有效处理大型且不断增长的数据集。
  • 集成:与机器学习和人工智能工作流程无缝集成,增强现代数据驱动应用程序的功能。

1. 非结构化数据支持

  • 突破传统限制:能够处理图像、文本、音频、视频等非结构化数据。
  • 语义理解能力:基于向量化表示,可实现语义层面的相似性搜索,不再依赖关键词匹配。

2. 搜索性能突出

  • 大规模数据友好:在百万级甚至亿级数据中也能实现毫秒级响应。
  • 空间效率高:通过索引结构(如 HNSW、IVF-PQ)压缩存储并加速查询。

3. 多模态统检索能力

  • 跨模态搜索:例如输入一张图片,返回语义相关的文本描述;或输入一句话,返回视觉相似的图像。
  • 统一语义空间:不同模态的数据被编码到同一向量空间中,便于联合检索。

4. 与AI模型天然契合

  • 无缝对接深度学习流程:模型输出的嵌入向量可以直接用于入库和查询。
  • 作为LLM的“记忆”扩展:大语言模型可通过向量数据库增强知识检索能力,减少幻觉。

5. 灵活的混合检索能力

  • 结合结构化字段:支持在向量检索基础上加入标签、时间、价格等结构化过滤条件。
  • 提升业务精度:例如“找相似商品且价格低于100元”。

6. 可扩展性强

  • 分布式架构支持:主流产品如 Milvus、Pinecone 支持水平扩展,适应海量数据增长。

这里我们也有必要了解一下向量数据库有哪些缺点,以便我们更加高效合理地评估与使用向量数据库。

1. 依赖高质量的嵌入模型

  • 结果质量受限于编码器:如果使用的模型不够准确,生成的向量不能很好地表达原始内容,最终检索效果会大打折扣。
  • 模型调优成本高:针对特定领域可能需要微调模型,增加开发复杂度。

2. 存在一定的误差率

  • 近似算法带来误差:为了提升查询速度,通常使用 ANN(近似最近邻)而非精确最近邻(Exact NN),导致召回结果并非绝对最优。
  • 精度 vs 速度权衡:在性能敏感场景中需权衡精准度与响应时间。

3. 构建与维护成本较高

  • 技术门槛较高:需要熟悉机器学习、向量索引、分布式系统等多方面知识。
  • 资源消耗大:向量数据库通常占用较多内存和计算资源,尤其在实时更新场景下。

4. 冷启动问题

  • 新数据难以快速融入:当有新样本插入时,索引可能需要重建或增量更新,影响检索时效性。
  • 推荐系统中的冷启动困境:没有用户历史行为数据时,难以生成有效的向量进行个性化推荐。

5. 缺乏统一标准

  • 接口不统一:各厂商/开源项目的 API 和使用方式差异较大,迁移成本高。
  • 评估指标不一致:不同产品的性能测试方式、精度衡量标准不统一,难做横向比较。

6. 安全与隐私风险

  • 数据泄露隐患:向量本身可能包含原始数据的语义信息,若未加密传输或访问控制不当,存在泄露风险。
  • 合规要求高:在金融、医疗等行业应用时,需满足更严格的数据保护法规(如 GDPR)。

2、突破传统数据库的瓶颈

1. 关键词匹配 vs 语义理解

  • 传统搜索引擎依赖关键词匹配,无法处理同义词、上下文含义。
  • 向量数据库通过语义向量实现“理解式搜索”。

2. 结构化 vs 非结构化数据

  • 传统数据库擅长处理表格数据(SQL),但对图片、视频、文档等非结构化数据无能为力。
  • 向量数据库则专为此设计。

3. 效率问题

如果用传统数据库的方案做相似性检索(比如计算所有向量之间的距离),时间复杂度是 O(n),当 n 达到百万级时,根本不可行。

3、向量数据库VS传统数据库

传统数据库是结构化数据管理的基石,例如关系型数据库(SQL Server、Postgres),以表格格式存储标量值,而非关系型数据库(MongoDB、Cassandra DB)则以基于文档/集合的格式存储标量值,适用于事务处理和精确查询。向量数据库是AI时代的核心基础设施,专注于非结构化数据的语义检索,以多维向量化存储,解决高维向量的存储与相似性搜索难题,在具体应用中,两者具有很强的互补性。

在这里插入图片描述
向量数据库VS传统数据库

具体来说,两者在数据模型、处理方式、应用场景等方面存在显著差异,以下是两者的主要区别

1. 数据模型

传统数据库

  • 结构化数据:以表格形式存储数据(行和列),强调严格的模式(Schema)和数据类型约束(如整数、字符串、日期)。

  • 核心特点:通过主键、外键维护数据关系,支持事务处理(ACID属性)。

  • 典型示例:关系型数据库(如MySQL、Oracle)或NoSQL数据库(如MongoDB)。

向量数据库

  • 非结构化/半结构化数据:将文本、图像、音频等非结构化数据通过嵌入模型(Embedding)转化为高维向量(如512-1536维浮点数数组)。
  • 核心特点:不依赖传统表格结构,专注于向量空间中的相似性计算。
  • 典型示例:Milvus、Pinecone、Faiss、openGauss DataVec。

2. 查询方式

传统数据库

  • 精确匹配与条件过滤:基于SQL查询语言,支持等值匹配(如WHERE id = 100)、范围查询(如WHERE price > 1000)和复杂关联查询。
  • 索引优化:使用B树、哈希表等索引加速查询,但难以处理高维向量的相似性搜索。

向量数据库

  • 相似性搜索:通过计算向量之间的距离(如欧氏距离、余弦相似度)查找最相似的数据点(近似最近邻搜索,ANN)。
  • 索引结构:采用HNSW、IVF-PQ、LSH等高效索引算法,支持大规模高维向量的快速检索。
  • 混合查询:部分系统支持结合标量字段(如时间戳)与向量查询(如SELECT * FROM vectors WHERE timestamp > ‘2023-01-01’ AND similarity > 0.8)。

3. 核心功能与性能

传统数据库

  • 事务处理(OLTP):适用于高并发的事务性操作(如金融交易、订单管理),强调数据一致性与实时性。
  • 数据规模:通常处理千万级结构化数据,但面对高维向量时效率低下。
  • 扩展性:垂直扩展(增加硬件资源)较易,水平扩展(分布式架构)复杂,需解决数据一致性问题。

向量数据库

  • 高维向量处理:专为大规模高维数据设计,支持百亿级向量的存储与快速检索(毫秒级响应)。
  • 计算密集型:查询依赖大量向量运算(如余弦相似度计算),需优化GPU/TPU加速。
  • 扩展性:天然支持分布式架构(如Milvus、Transwarp Hippo),可水平扩展至千节点集群。

4. 应用场景

传统数据库

  • 企业核心业务系统:ERP、CRM、供应链管理等需要高事务一致性的场景。
  • 数据分析:数据仓库(OLAP)中的报表生成、历史数据分析。
  • 典型场景:订单管理、库存追踪、用户账户系统。

向量数据库

  • 推荐系统:基于用户行为向量的个性化推荐(如视频、商品)。
  • 语义搜索:文本、图像的语义相似性检索(如搜索引擎、知识库问答)。
  • RAG(检索增强生成):为大模型提供外部知识库支持,解决“幻觉”问题。
  • 计算机视觉:图像/视频特征匹配(如人脸识别、目标检测)。
  • 多模态融合:跨模态检索(如“查找包含猫的图片”)。

5. 技术实现差异

存储结构

  • 传统数据库:行存储(Row-based)或列存储(Column-based),强调数据压缩与索引效率。
  • 向量数据库:向量量化压缩(如IVF-PQ)减少存储开销,支持分布式存储(如HDFS、对象存储)。

索引与算法

  • 传统数据库:B树、哈希索引。
  • 向量数据库:HNSW(分层导航小世界图)、IVF-PQ(倒排文件+乘积量化)、LSH(局部敏感哈希)等,针对高维向量优化。

事务与一致性

  • 传统数据库:严格遵循ACID原则,支持多版本并发控制(MVCC)。
  • 向量数据库:通常弱化事务一致性,优先保证查询性能(如最终一致性)。

如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。

在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值