重要性采样的目的就是用一个易于采样的分布 q(x) 去对一个难以采样的分布 p(x) 进行无偏估计。
这里的 p(x) 虽然难以采样,但是概率还是可以算的。在 PPO 中,新策略就是难以采样的分布,旧策略就是相对易于采样的分布。
这里说的采样,是指产生一个完整的回答,也叫一个 episode/rollout。
一、为什么新策略难以采样?
因为如果要用新策略采样的数据去更新模型,那么对于一条数据而言,模型吃进去产生梯度,然后更新一次,接着吃下一条数据,再更新一次数据,那么这样一来一条数据只能更新一次。
这样数据利用率低,训练慢,而且随机性高,对追求稳定的 RLHF 并不好。
所以我们可以用这么一种策略,对于一条数据,用旧策略生成一批数据(这个重复的数量为 rollout_batch_size/train_batch_size)。
接着分成 K 份,每次策略吃一份,产生一个 loss,更新一次模型得到 pai_θ1,接着把第二份数据输入 pai_θ1 中获取对应的概率值,分母一样是 pai_θold。
这样重复 k 次,把这条数据产生的内容全部处理完成,这样就可以修正单条采样数据带来的随机偏差,并且一条数据可以利用多次,大大提高了数据利用率。
并且由于一次生成 N 条数据比 N 次生成一条数据更快,所以也提高了训练效率。
二、重要性采样中的重要性是如何体现的?
另外还有个点,重要性三个字在重要性采样中是如何体现的?
主要就是那个新旧策略对某个 token 的概率比,这个概率比就叫重要性采样比。
就是比如说对于 token_i 而言,如果新策略产生这个 token 的概率远大于旧策略产生这个 token 的概率,那么这个重要性采样比就很大,就说明这次采样中的这个 token 对新策略很重要。
综上,重要性采样对于 RLHF 而言,可以近似无偏估计地实现一个 on policy 的强化学习过程,并且提高数据利用率,保证模型更新的稳定,提高训练效率。
如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 大模型行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】