大模型论文 | 大模型检索-推理协同技术详解:解决LLM两大瓶颈的完整指南

本文系统探讨了检索-推理系统在大语言模型中的应用,针对知识幻觉与推理不足两大瓶颈,详细分析了推理增强型RAG、RAG增强型推理及协同检索-推理框架三种方法。文章阐述了检索优化、整合优化、生成优化等关键技术路线,以及推理工作流和智能体编排两大协同范式,并对推理效率、检索效率、人机协作等挑战与未来发展方向进行了展望,为构建高效可信的大模型系统提供了重要参考。

大语言模型虽然具备强大的生成能力,但仍受困于两大瓶颈:知识幻觉与复杂推理不足。传统RAG技术虽能增强事实性,却难以应对多步推理;纯推理方法又常因缺乏事实支撑而失真。

清华大学等研究机构的学者系统地对检索-推理系统进行了详细研究:首先梳理了两种单向增强方法:推理增强型RAG(通过多步推理优化检索流程)和RAG增强型推理(利用检索知识填补逻辑漏洞)。随后,重点探讨了新兴的协同检索-推理框架,推理过程主动指导检索策略,而新检索到的知识又持续优化推理流程。这一趋势也进一步体现在最新的Deep Research类产品中,强调检索与推理的紧密耦合以增强解决复杂问题的能力。

本文的综述不仅填补了该领域系统化研究的空白,也为构建更高效、多模态适应、可信且以人为中心的检索-推理系统提供了重要参考,为后续技术发展指明了路径。

在这里插入图片描述

在这里插入图片描述

  • 论文标题:Towards Agentic RAG with Deep Reasoning: ASurvey of RAG-Reasoning Systems in LLMs
  • 论文链接:https://arxiv.org/pdf/2507.09477
  • 项目地址:https://github.com/DavidZWZ/Awesome-RAG-Reasoning

在这里插入图片描述

01

推理增强型RAG

传统RAG先检索文档,再结合查询生成答案,但这类方法往往难以处理复杂推理。通过在检索、整合与生成各阶段融入推理能力,可提升信息匹配精度,减少幻觉,增强回答准确性。

(1)检索优化

检索优化利用推理来提高结果的相关性和质量。现有方法主要分为三类:

推理感知的查询重构

通过重构原始查询来更好地获取与推理相关的上下文。首先查询分解将复杂问题拆解为更简单的子查询;然后查询改写将模糊查询转化为更清晰的表述,部分研究采用强化学习训练改写模型以匹配生成器的推理需求;最后查询扩展通过思维链推理增强查询的语义丰富度。

检索策略与规划

检索优化的两大技术路线包括:采用推理模型预先生成完整检索蓝图的全局规划;采用单步预测机制动态判断是否需要检索的自适应决策

检索模型增强

现有研究通过两种方式增强检索器推理能力:利用知识图谱(GNN-RAG采用图神经网络编码知识图谱实现隐式多跳推理)或符号规则(RuleRAG)等结构化知识指导检索;或将CoT****显式推理与查询结合,提升多跳问答的中间知识召回。

(2)整合优化

通过引入推理机制来评估相关性并融合多源证据,从而避免无关内容干扰最终生成效果。其核心方法可分为两类:

相关性评估与过滤

通过深层次推理评估检索片段与查询的相关性。如SEER采用评估专家机制筛选高质量证据;Yoran等人使用NLI模型过滤非蕴含内容,并通过混合上下文微调LLM来抑制噪声干扰。

信息合成与融合

识别相关片段后,需将其融合为连贯证据集。BeamAggR基于概率推理聚合子问题答案组合;DualRAG通过推理增强查询渐进聚合信息;CRP-RAG构建推理图以处理节点级知识,生成前动态选择最佳知识路径。

(3)生成优化

传统RAG系统即便获取检索内容,仍会因缺乏推理生成不实内容。当下研究主要采用两种优化方案:

上下文感知合成策略

通过选择性上下文利用和构建显式推理路径来确保生成内容的相关性并降低噪声。

基于证据的生成控制

通过推理验证机制,确保输出紧扣检索证据。如:事实验证方法评估生成内容与证据的一致性;引用生成方法通过关联内容与来源提升可信度;忠实推理方法要求每一步均基于证据,避免引入未经验证信息。

02

RAG增强型推理

在推理过程中整合外部知识或上下文中的知识,有助于大语言模型减少幻觉并弥补逻辑漏洞。

(1)外部知识检索

通过整合网络内容、数据库信息和外部工具来增强推理能力,有效填补知识空白。定向检索技术将推理步骤锚定在已验证的外部证据上,使语言模型能够可靠处理复杂查询,显著提升事实准确性。

(2)上下文检索

利用模型的内部经验或从示例和训练数据中检索到的样例来引导推理。该方法提供相关范例,指导模型模仿推理模式,从而提升回答新问题时的准确性和逻辑连贯性。

03

检索-推理协同范式

许多现实问题(如开放域问答和科学发现)需迭代式检索与推理,使新证据不断优化推理,反之亦然。单次检索或推理难以充分支持复杂任务。通过多步交互式协同,系统可逐步提升信息相关性与查询理解。现有方法主要聚焦两个方向:

(1)推理工作流

推理工作流可分为基于链、基于树和基于图的结构,体现出从线性推理向多分支复杂推理范式的技术演进。

**基于链:**链式推理架构(如CoT)通过线性思维链进行推理,但仅依赖大语言模型的参数化知识,容易产生错误传播。为此,研究者通过在推理步骤间加入检索操作来优化,最新进展还引入了验证与过滤机制以提升鲁棒性。

**基于树:**通常采用“思维树”(ToT)或蒙特卡洛树搜索(MCTS)框架。ToT 将思维链扩展为显式构建确定性推理树,从而并行探索多条逻辑路径。相比之下,基于 MCTS 的方法采用概率树搜索,依据启发式概率动态优先探索高潜力路径。

**基于图:**Walk-on-Graph方法主要依赖图学习技术实现检索与推理的协同。相比之下,Think-on-Graph方法直接将图结构整合到大语言模型推理循环中,通过模型自主引导实现动态迭代的检索-推理过程。

(2)智能体编排

根据智能体架构分类,现有研究可划分为两大方向:

单智能体

单智能体系统将知识检索融入大语言模型的推理循环中,使其能够在解决问题的每一步动态查找信息,并在需要时主动寻找相关证据。

具体实现包括:使用提示策略使大模型显式交替执行推理和工具调用;通过基于指令或合成数据集的监督微调(SFT)方法;以及强化学习驱动,通过奖励信号优化智能体行为的方法(最近研究进一步推出在动态环境下及端到端的强化学习训练)。

多智能体

RAG与推理任务中的多智能体协作研究催生了两类典型架构:集中式架构(通过"工作者-管理者"模式整合集体智能)与分布式架构(利用角色专精智能体的互补能力)。

04

挑战与机遇

协同式检索-推理系统的未来研究致力于提升推理和检索能力,以满足现实世界对准确性、效率、可信度和用户对齐的需求。下面概述关键挑战与机遇:

推理效率:协同式检索-推理系统虽擅长复杂推理,但因迭代检索与多步推理易致显著延迟。未来需通过潜在推理、思维蒸馏、长度惩罚等策略优化推理效率,并探索模型压缩技术,发展高效的轻量级系统。

检索效率:在检索方面,需结合预算感知的查询规划与记忆感知的缓存机制,减少冗余访问;通过自适应检索控制,依据不确定性信号动态调整检索时机与规模,降低无效操作。这些技术推动系统从静态RAG向现实约束下的动态、自调节高效检索演进。

人机协作:检索-推理应用多具个性化,用户往往难以明确需求或处理结果。未来系统需建模不确定意图,支持迭代澄清,并设计可自适应用户水平与偏好的智能体。

智能体架构与能力:协同式检索-推理的核心是智能体架构,系统能自主分配角色并调用工具或检索策略。未来研究应聚焦于构建支持动态选工具、检索规划与自适应协同的智能体框架。

多模态检索:现有协同式检索-推理系统多限于文本任务,但实际应用亟需多模态内容的检索与融合。未来研究应增强多模态大模型的跨模态对齐与推理能力,发展混合模态思维链以支持现实交互,并构建统一的多模态检索器,实现对图像、表格、文本等异构数据的联合嵌入。

检索可信度:协同式检索-推理系统易受污染知识的攻击,确保检索可信对推理可靠性至关重要。水印等技术可提升可追溯性,但亟需更动态自适应的方法应对模型演进与新型攻击。不确定性量化与鲁棒生成已单独探索,未来应整合以增强系统可信与鲁棒性,并扩展基准至多维可信度评估。


如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。

在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

<think>嗯,用户现在问的是视频检索系统的架构设计,我需要先回顾一下之前的问题历史。之前他问了关于Git分支合并的问题,现在转向视频检索系统,这可能是一个技术架构师或者开发者在处理不同项目时的需求。用户可能是需要构建一个视频检索系统,所以需要了解整体的架构设计,可能涉及到存储、处理、检索等模块。 首先,我应该确定视频检索系统的基本组成部分。通常这类系统包括视频数据的预处理、特征提取、存储、索引构建、检索模块以及用户接口。用户可能希望了解每个模块的作用和如何协同工作。另外,用户可能关心实时性、准确性和可扩展性,这些都是设计时需要考虑的关键点。 接下来,我需要考虑视频数据的处理流程。比如,视频上传后如何进行分帧、特征提取,使用哪些算法(如CNN、RNN、3D卷积网络等)。特征提取后的向量如何存储和索引,可能用到向量数据库如Faiss或Milvus。然后,当用户发起查询时,系统如何匹配相似特征,返回结果。这部分需要详细说明各个步骤的技术选型和实现方式。 另外,用户可能对系统的架构图感兴趣,所以应该提供一个分层的架构图,包括数据层、处理层、存储层、检索层和用户层。每个层次的功能和组件需要明确。例如,数据层负责视频的存储,处理层进行特征提取,存储层管理元数据和特征向量,检索层处理相似性搜索,用户层提供API和界面。 同时,需要考虑系统的扩展性和性能优化。比如,分布式存储和计算框架(如Hadoop、Spark)可以处理规模数据,使用GPU加速特征提取,缓存机制提升响应速度。这些都是设计时的重要考虑因素。 还要提到关键技术,如特征提取模型的选择,最近可能更倾向于使用基于Transformer的模型,比如ViT或者视频专用的TimeSformer。另外,多模态检索也是一个趋势,结合文本、音频和视觉特征,提升检索准确性。 用户可能没有明确说出来的需求包括系统的实时处理能力、如何处理高并发请求、数据的安全性和隐私保护。这些方面也应该在架构设计中提到,比如使用负载均衡、分布式处理、加密存储等。 最后,应该给出最佳实践建议,比如模块化设计、选择合适的算法和工具、性能优化策略以及测试和迭代的重要性。这样用户在实际开发中能够有一个清晰的指导方向,避免常见陷阱,提升系统效率和可靠性。</think>以下是视频检索系统架构设计的 **模块化解析** 与 **技术实现路线**,包含核心流程、关键技术选型和性能优化策略: --- ### 一、**系统核心架构分层** ![视频检索系统架构图](https://pic3.zhimg.com/80/v2-2e8a0d0c3a4b9b7e4d3b5d0a7b1c3d3d_1440w.png) ```text 用户层 → 检索服务层 → 特征处理层 → 数据存储层 → 原始视频库 ``` --- ### 二、**核心模块详解** #### ▶ **1. 视频预处理模块** - **关键功能**: ```bash 视频解码 → 关键帧提取 → 分辨率标准化 → 格式统一化 ``` - **技术实现**: ```python # 使用OpenCV提取关键帧示例 import cv2 vidcap = cv2.VideoCapture('input.mp4') success, image = vidcap.read() while success: cv2.imwrite(f"frame_{count}.jpg", image) success, image = vidcap.read() ``` #### ▶ **2. 特征提取引擎** - **视觉特征提取**: - 2D特征:ResNet/ViT(图像级特征) - 3D特征:C3D/SlowFast(时序特征) ```python # 使用PyTorch视频特征提取 model = torch.hub.load('facebookresearch/pytorchvideo', 'slow_r50', pretrained=True) frames = preprocess(video_clip) features = model(frames) ``` - **多模态融合**: - CLIP模型(图文跨模态对齐) - Audio-Visual网络(音画联合特征) #### ▶ **3. 向量索引系统** | 数据库类型 | 特点 | 适用场景 | |----------------|------------------------|------------------| | FAISS | GPU加速/亿级检索 | 高并发实时检索 | | Milvus | 分布式/动态扩容 | 企业级部署 | | ElasticSearch | 文本混合检索 | 多模态检索 | ```bash # Milvus向量插入示例 curl -X POST http://localhost:9091/entities -H "Content-Type: application/json" -d '{ "collection_name": "video_features", "fields": { "feature_vector": [0.12, 0.34, ..., 0.78], "video_id": "VID_001" } }' ``` #### ▶ **4. 检索服务层** - **查询处理流程**: ```mermaid graph LR A[用户输入] --> B{输入类型判断} B -->|文本| C[文本嵌入] B -->|图像| D[图像特征提取] B -->|视频| E[视频特征提取] C/D/E --> F[多模态特征融合] F --> G[向量相似度计算] G --> H[结果排序与返回] ``` --- ### 三、**性能优化策略** #### ▶ **计算加速方案** 1. **硬件层面**: - 使用T4/V100 GPU加速特征提取 - FPGA部署量化模型 2. **算法层面**: ```python # 使用TVM优化模型推理 mod = tvm.relay.from_pytorch(model, input_shapes) lib = relay.build(mod, target="cuda") ``` #### ▶ **存储优化方案** - **分级存储策略**: ```text 热数据:SSD存储特征向量 + Redis缓存高频结果 冷数据:HDFS归档原始视频 ``` #### ▶ **检索效率提升** - **近似最近邻(ANN)算法**: - HNSW(图结构索引) - PQ(乘积量化压缩) ```python # FAISS索引构建示例 index = faiss.IndexHNSWFlat(512, 32) index.add(feature_vectors) ``` --- ### 四、**关键技术选型对比** | 技术维度 | 方案A | 方案B | 推荐场景 | |----------------|----------------------|----------------------|--------------------| | 特征提取 | ResNet-152 | ViT-Large | 高精度场景 | | 向量数据库 | Milvus 2.0 | ElasticSearch 8.0 | 混合检索需求 | | 视频解码 | FFmpeg+NVIDIA解码器 | OpenCV原生解码 | 4K高清视频处理 | | 分布式框架 | Kubernetes+Docker | Apache Mesos | 云原生环境 | --- ### 五、**典型业务场景适配** #### ▶ **短视频检索** - **架构特点**: - 使用轻量级MobileNetV3特征提取 - 采用Redis做结果缓存 - 响应时间<200ms #### ▶ **长视频内容定位** - **关键技术**: - 分层时间戳索引:$T_{segment} = [t_1, t_2, ..., t_n]$ - 时序注意力机制: $$Attention(Q,K,V)=softmax(\frac{QK^T}{\sqrt{d_k}})V$$ #### ▶ **跨模态检索** - **实现方案**: ```python # CLIP跨模态检索示例 text_features = clip_model.encode_text(text_input) image_features = clip_model.encode_image(image_input) similarity = cosine_similarity(text_features, image_features) ``` --- ### 六、**系统监控指标** ```text 1. 特征提取吞吐量:帧/秒 (FPS) 2. 检索响应延迟:P95 < 300ms 3. 系统可用性:SLA 99.95% 4. 特征存储压缩率:> 70% ``` --- ### 七、**演进方向** 1. **新兴技术整合**: - 神经渲染技术(NeRF)用于三维场景检索 - 语言模型(LLM)实现语义增强检索 2. **边缘计算部署**: ```text 终端设备 → 边缘节点特征提取 → 云端深度检索 ``` **设计建议**:初期采用模块化设计,优先保证核心检索链路,逐步扩展多模态能力,推荐使用云原生架构保证弹性扩展能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值