- 博客(1022)
- 收藏
- 关注

原创 一文搞懂通义千问(Qwen)相关的核心概念
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!
2024-11-06 10:28:24
10975

原创 大模型常用评测基准汇总(通用评测基准、具体评测基准),看这一篇就够了!
在评测集维度,OpenAI和Google会直接使用Chatbot Arena的结果,在对大模型进行评估时,较为简单、高效、易操作的方式是关注Chatbot Arena的leaderboard。目前所有大模型综合排行榜目前中文大模型排行榜SuperCLUE琅琊版6月排名在评估中文大模型的能力时SuperCLUE会作为重要指标,从榜单上可以看出中文大模型的效果还是差于国外大模型,这种落后不能单一归结为某一个原因,我们需要认识到在算力、算法、数据中的各种不足。征途漫漫,惟有奋斗。
2024-09-26 07:30:00
9459

原创 大模型超详细盘点!常用的大模型及其优缺点、有潜力的大模型、国内大模型行业落地的现况、国内大模型优势、挑战与前景
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!
2024-09-21 09:55:42
9847
原创 本地部署大模型 | GraphRAG + Ollama 本地部署全攻略
微软开源 GraphRAG 后,热度越来越高,目前 GraphRAG 只支持 OpenAI 的闭源大模型,导致部署后使用范围大大受限,本文通过 GraphRAG 源码的修改,来支持更广泛的 Embedding 模型和开源大模型,从而使得 GraphRAG 的更容易上手使用。
2025-07-10 12:09:36
677
原创 大模型应用开发 | 通俗易懂解析什么是Function Call?
以前的AI只能跟你聊天、背课文,现在有了Function Call,它就像戴上了"万能工具眼镜":能联网查实时数据、能操控现实中的工具、能帮你完成各种跑腿任务。未来可能更夸张:你说一句"周末想带爸妈去露营",助手直接调用地图找营地、调用超市API买装备、甚至调用汽车APP预约租车——而这一切,只需要你动嘴说句话~这就是Function Call的魔力:让AI不只是"会说话的百科全书",而是真正能帮你解决生活难题的智能伙伴!
2025-07-06 20:00:00
559
原创 大模型论文 | 清华智谱联合发布 GLM-4.1V:构建可解释、可扩展的多模态思维模型
人类感知世界的方式从不局限于文字。我们通过图像阅读新闻、借助视频学习知识、在界面中执行任务。正因如此,多模态模型——能同时理解图像、语言甚至视频的系统——被认为是迈向“通用智能”的关键技术之一。然而,理解与“推理”是两个层次。大多数现有视觉-语言模型在图像理解上已经可圈可点,但面对复杂的科学题目、图表分析或跨页面文档推理时,却往往力不从心。真正的挑战,在于跨模态、跨任务的深度“推理能力”。7 月 2 日,智谱正式开源新一代视觉推理模型 GLM-4.1V-Thinking,引发业界广泛关注。
2025-07-05 19:45:00
644
原创 大模型面试题解析 | RLHF为何要用重要性采样?
重要性采样的目的就是用一个易于采样的分布 q(x) 去对一个难以采样的分布 p(x) 进行无偏估计。这里的 p(x) 虽然难以采样,但是概率还是可以算的。在 PPO 中,新策略就是难以采样的分布,旧策略就是相对易于采样的分布。这里说的采样,是指产生一个完整的回答,也叫一个 episode/rollout。
2025-07-04 11:34:03
495
原创 大模型面试题解析 | MCP和functional calling的区别是什么?
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。,以动态、形象的方式展示技术概念,
2025-07-04 11:19:00
261
原创 大模型项目实战 | 基于大模型构建一个高效的新闻推荐系统
通过上述步骤,我们成功地利用通义千问或其他大模型构建了一个高效的新闻推荐系统。系统基于用户的阅读行为和兴趣生成用户画像,并通过召回和精排步骤,推荐最符合用户兴趣的新闻内容。
2025-07-03 20:00:00
742
原创 【大模型微调】一文详解11种大模型微调方法(非常详细)看这一篇就够了!
本文从背景、来源、技术路线及性能等方面综述了11种在模型参数调优阶段进行的方法,其中前缀调优、提示调优和P-Tuning v2属于引入特定参数来减少算力消耗、提升训练速度;基于LoRA的各种方法的基本思想是添加新的旁路,对特定任务或特定数据进行微调。开源社区Hugging Face将这11种方法归纳为高效参数调优方法(Parameter-Efficient Fine-Tuning,PEFT)。PEFT方法能够在不微调所有模型参数的情况下,有效地让预训练语言模型适应各种下游应用。
2025-07-03 13:22:14
1124
原创 大模型微调 | 一文详解三种微调(Fine-tuning)方式:Prompt-tuning、Prefix-tuning、LoRA
Prompt-tuning通过修改输入文本的提示(Prompt)来引导模型生成符合特定任务或情境的输出,而无需对模型的全量参数进行微调。这种方法利用了预训练语言模型(PLM)在零样本或少样本学习中的强大能力,通过修改输入提示来激活模型内部的相关知识和能力。核心原理:PLM(预训练模型)不变,W(模型的权重)不变,X(模型输入)改变。Prefix-tuning是Prompt-tuning的一种变体,它通过在输入文本前添加一段可学习的“前缀”来指导模型完成任务。
2025-07-03 12:37:52
778
原创 向量数据库入门到精通(三)向量数据库的工作原理(向量嵌入、数据存储、索引构建、查询处理、数据预处理与优化)
向量数据库的工作原理主要围绕高维向量数据的嵌入存储、索引构建和高效检索展开,其核心目标是通过优化数据结构和算法,在大规模高维数据场景下实现快速的相似性搜索。行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。面试不仅是技术的较量,更需要充分的准备。
2025-06-30 21:57:13
1058
原创 向量数据库入门到精通(二)向量数据库的发展历程,为什么需要向量数据库?
向量数据库是AI时代的核心基础设施,专注于非结构化数据的语义检索,以多维向量化存储,解决高维向量的存储与相似性搜索难题,在具体应用中,两者具有很强的互补性。实事上,向量数据库已经存在相当长一段时间了,从早期的向量空间模型,到深度学习时代的高维数据处理工具,再到生成式AI驱动的基础设施,其发展始终围绕高效存储、快速检索与多模态融合展开。行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
2025-06-30 21:55:33
1039
原创 向量数据库入门到精通(一)什么是向量数据库?
我们正处于人工智能变革之中,AI正在颠覆所有涉及的行业,带来巨大的创新,但也带来了新的挑战。对于涉及大模型、生成式人工智能和语义搜索的应用而言,高效的数据处理比以往任何时候都更加重要。所有这些新应用都依赖于向量嵌入,这是一种向量数据表示,它包含语义信息,对于人工智能理解并保持在执行复杂任务时可以利用的长期记忆至关重要。这就是我们今天介绍的主角——向量数据库。
2025-06-30 21:44:16
1050
原创 MCP(Model Context Protocol)协议全解析(二)MCP 协议的使用方式和核心架构
本质上 MCP 协议是规定了大模型与外界应用沟通的一套标准规范,需要注意的是,MCP 协议只提供统一的工具接口,而无法决定工具将被如何选择和组合。大语言模型(LLM)负责提供基础的自然语言理解与生成能力,智能体(Agent)框架承担任务分解与执行逻辑的协调功能,而模块化控制平台(MCP)则致力于提供标准化的工具调用接口。
2025-06-28 17:45:00
828
原创 大语言模型(LLM)| 一文详解3种常用的知识蒸馏技术(软标签蒸馏、硬标签蒸馏、协同蒸馏)
知识蒸馏就像LLM世界的“师徒传承”,让大模型把经验传给小模型,既节省资源,又保证性能。软标签蒸馏像老师倾囊相授,但费时费力;硬标签蒸馏简单直接,却少了点深度;协同蒸馏则是师生携手共进,各有千秋。
2025-06-28 14:05:41
740
原创 MCP(Model Context Protocol)协议全解析(一)MCP 是什么?从 API、LSP 到 MCP
连接到他们的上下文,这个自定义方式使用了他们自己的的提示逻辑,并使用不同的方式来引入工具和资源,然后以不同的方式协同访问这些工具和数据。如果一家公司内有多个团队,每个团队有自己的一套自定义的方式,那么可以想象整个行业也是这么做的,这就存在。
2025-06-28 10:35:10
775
原创 AI大模型应用开发 | 大模型实战:多智能体旅行规划工具
在连接智能体之前,我们定义一个共享的GraphState,用于跟踪每个智能体的中间输出——从行程到天气预报再到对话历史。chat_history: Annotated[list[dict], "问答列表"]这让所有智能体都能读写一个动态更新的状态字典。我们指定入口点并将每个节点连接到终点(END)。为简单起见,每个用户操作运行一个节点,但你也可以根据需要定义复杂路径。# 定义单次流程的终点这会生成一个可调用的对象,接受GraphState并在选定节点运行后返回更新版本。
2025-06-27 12:00:26
956
原创 Transformer模型 | 一文解析什么是词嵌入、静态词向量、动态词向量、词表?Transformer如何实现词嵌入?
词嵌入是一种将词语映射为低维稠密向量的技术。例如,词语“苹果”可能被表示为一个300维的向量:v苹果=[0.21,−0.56,0.87,…,0.34]这些向量在空间中“排列”得很有规律:语义相近的词(如“苹果”和“香蕉”)距离更近,而语义无关的词(如“苹果”和“汽车”)则距离较远。
2025-06-27 10:25:00
728
原创 大语言模型LLM |(三)20道面试题答案解析(LLMs、Transformers、RAG、CoT、知识图谱....)
CoT提示引导LLMs逐步解决问题,模仿人类推理。例如,在数学问题中,它将计算分解为逻辑步骤,提高复杂任务(如逻辑推理或多步查询)的准确性和可解释性。注释:CoT是提升LLM推理能力的重要提示技术零样本学习允许LLMs使用预训练的通用知识执行未训练的任务。例如,当提示"将此评论分类为正面或负面"时,LLM可以在没有任务特定数据的情况下推断情感,展现其多功能性。注释:零样本学习展现了大模型的泛化能力,是其智能表现的重要体现少样本学习使LLMs能够用最少的例子执行任务,利用预训练知识。
2025-06-26 20:15:00
1767
原创 大语言模型LLM |(二)15道面试题答案解析(LLMs、Transformers....)
过拟合发生在模型记忆训练数据而无法泛化时。正则化:L1/L2惩罚简化模型Dropout:训练期间随机关闭神经元早停:验证性能平稳时停止训练这些技术确保对未见数据的强健泛化。注释:过拟合是机器学习的基本问题,在大模型时代仍需关注位置编码向transformer输入添加序列顺序信息,因为自注意力机制缺乏固有的顺序感知。使用正弦函数或学习向量,它们确保像"king"和"crown"这样的标记基于位置被正确解释,这对翻译等任务至关重要。注释:位置编码解决了注意力机制无法感知位置信息的问题。
2025-06-26 19:30:00
584
原创 大语言模型LLM |(一)15道面试题答案解析(LLMs、注意力机制、上下文窗口、微调....)
掩码语言建模(MLM)涉及隐藏序列中的随机标记,并训练模型基于上下文预测它们。在BERT等模型中使用,MLM促进语言的双向理解,使模型能够掌握语义关系。这种预训练方法为LLMs在情感分析或问答等任务中做好准备。注释:MLM是BERT类模型的核心训练任务,与GPT的自回归训练方式形成对比序列到序列(Seq2Seq)模型将输入序列转换为输出序列,通常长度不同。它们由处理输入的编码器和生成输出的解码器组成。应用包括机器翻译(如英语到西班牙语)、文本摘要和聊天机器人,这些场景中变长输入和输出很常见。
2025-06-26 11:07:15
556
原创 大模型 | 一图解析Transformer与混合专家(MoE)
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。,以动态、形象的方式展示技术概念,
2025-06-26 10:26:39
851
原创 大模型应用开发 | 什么是Agent智能体?如何构建高效的Agent?
在过去的一年里,Anthropic 团队与数十个跨行业的团队合作,帮助他们构建大语言模型(LLM)智能体。有个有趣的发现:最成功的实现往往不是那些使用复杂框架或专业库的项目,而是采用简单、可组合模式的项目。这篇文章分享了Anthropic在与客户合作和自建智能体过程中积累的经验, 为开发者提供构建有效智能体的实用建议。"智能体"这个词有很多种定义。有些人把它定义为完全自主的系统,能够长时间独立运行,使用各种工具完成复杂任务。另一些人则用它来描述遵循预定义工作流程的更规范化的实现。Anthropic 将这些变
2025-06-24 20:01:08
559
原创 大模型应用开发 | 一文解析MCP、RAG、Function Calling、Agent、微调!
2025年,AI技术正经历从“模型崇拜”到“场景适配”的深刻转变。企业不再满足于通用模型的“平均能力”,而是通过。
2025-06-24 14:09:45
748
原创 大语言模型 | 一文搞懂什么是Embedding(嵌入)
GPT(Generative Pre-trained Transformer)分别代表了生成式(Generative)、已预训练的(Pre-trained)和Transformer架构,这三部分共同构成了当前火热的大语言模型(LLM)。
2025-06-23 20:07:06
636
原创 大模型 | 一文详解RAG、Agent、MCP
RAG,全称检索增强生成(Retrieval-Augmented Generation) ,是一种将信息检索与文本生成相结合的技术。简单来说,它就像是给大模型配备了一个智能搜索引擎。当用户提出问题时,RAG 会先在外部知识库、数据库或文档库中进行检索,找到与问题相关的信息,然后将这些信息作为参考,输入到语言模型中,让模型基于这些信息生成回答 。这种方式打破了大模型仅依赖内部预训练知识的局限,使得生成的内容更加准确、丰富且与实际情况相符。前文提到的大模型 “幻觉” 问题,在 RAG 的作用下能得到有效缓解。由
2025-06-21 15:07:05
789
原创 一文详解什么是知识图谱?知识图谱和大模型有什么关系?
我们先来看第一个问题: 知识图谱是什么?可以看上面这个图,这个图形表达了如下信息:张三和李四是朋友。张三在苹果公司工作。李四在香蕉公司工作。苹果公司投资了香蕉公司。这就是一个知识图谱的形象化表示。所以我们总结一下,什么是知识图谱:1.是一个存储信息的方法;2.描述的是事实;3.核心表达是实体和关系;4.可以有多种实体,多种关系;我们再来看第二个问题: 知识图谱和大模型有什么关系?
2025-06-21 14:53:25
870
原创 大模型微调 | 一文带你解析大模型微调(Fine-tuning),看这一篇就够了!
所谓大模型微调,指的在已有的大规模预训练模型基础上,通过对标注数据进行训练,进一步优化 模型的表现,以适应特定任务或场景的需求。不同于RAG或者Agent技术,通过搭建工作流来优化模型表现,微调是通过修改模型参数来优化模型能力,是一种能够让模型“永久”掌握某种能力的方法。
2025-06-20 20:00:00
1738
原创 构建RAG(检索增强生成)的向量数据库,选择建立问题库还是文本库?
在构建RAG(检索增强生成)的向量数据库时,选择建立问题库还是直接对原始文本进行embedding的文本库,需要结合知识类型、使用场景和系统目标综合权衡。
2025-06-20 11:19:31
898
原创 大模型微调 | 一篇搞明白大模型11种微调方法
前缀调优(PrefixTuning)是一种轻量级的微调替代方法,专门用于自然语言生成任务。前缀调优的灵感来自于语言模型提示,前缀就好像是“虚拟标记”一样,这种方法可在特定任务的上下文中引导模型生成文本。前缀调优的独特之处在于它不改变语言模型的参数,而是通过冻结LM参数,仅优化一系列连续的任务特定向量(即前缀)来实现优化任务,如图1所示。
2025-06-19 20:00:00
1059
原创 一文彻底搞懂大模型微调!什么是大模型微调?为什么需要微调?微调技术架构,看这一篇就够了!
大模型微调(Fine-tuning)是指基于预训练的大型语言模型(如GPT、BERT等),通过特定领域或任务的数据进行二次训练,使模型适应具体应用场景的技术过程。与从零开始训练相比,微调能够以较低成本实现模型的领域适配,是AI大模型落地应用的核心技术路径。
2025-06-19 11:38:16
1048
原创 大型语言模型LLM | 一文解析LLM大模型蒸馏(数据准备、模型选择、模型蒸馏、模型量化、模型部署)
随着人工智能技术的飞速发展,大型语言模型(LLM)展现出了强大的自然语言处理能力。然而,这些模型通常具有庞大的规模和高昂的计算成本,这使得它们在资源受限的移动端设备上的部署面临巨大挑战。模型蒸馏技术作为一种有效的模型压缩和优化方法,能够将大型教师模型的知识迁移到小型学生模型中,从而在降低模型计算资源需求的同时,尽可能保持模型的性能。本文将详细介绍 LLM 大模型蒸馏落地移动端的全流程,包括数据准备、模型选择、模型蒸馏、模型量化以及模型部署等关键步骤。
2025-06-18 11:56:51
1027
原创 大模型论文 | 微软的Code Researcher:告别手动调试!自动修复大型系统代码,效果惊人
这篇论文是来自微软的优秀论文!构建了一个针对大型系统代码库的深度研究智能体。在处理超大规模代码库方面采用了许多有趣的技巧。
2025-06-18 11:22:44
757
原创 一文解析LoRA 微调!深入理解LoRA原理
预训练模型:如DeepSeek、BERT、GPT等,已在大量数据上训练,具备广泛的语言理解能力。微调:为适应特定任务,通常需要对整个模型进行微调,但这种方法计算和存储成本高。LoRA 微调解决了传统微调的局限性。如图所示,底部网络表示大型预训练模型,而顶部网络表示带有 LoRA 层的模型。其核心思想是只训练 LoRA 网络,而冻结大型模型。
2025-06-17 11:30:32
632
原创 大模型论文 | 溯源分析RAG系统错误,提出选择性生成框架,让RAG问答准确率提升10%
检索增强生成(Retrieval-Augmented Generation,RAG)是当前NLP领域中最重要的技术突破之一。它将大语言模型(LLMs)与动态信息检索机制相结合,有效解决了传统语言模型的三大核心问题:知识固化问题、事实性幻觉倾向,以及长尾知识覆盖不足的缺陷。这种方法在开源和商用应用中都非常广泛,如搜索问答、智能客服、医疗辅助诊断等。尽管 RAG 在许多任务中表现优异,但仍经常出现“幻觉”(hallucination)现象,即模型在提供不完整或无关文档时依然自信地生成错误答案。
2025-06-17 11:06:09
589
原创 一文解析OpenMemory MCP!新一代AI 智能体的 MCP 持久化记忆架构体系
当下,多数 AI 助手和开发工具各自独立运行,一旦会话结束,上下文就会消失,这严重影响了使用体验和效率。而来了,。比如,你可以通过 OpenMemory MCP,让数据得到延续。OpenMemory MCP 是一个,就像一个“记忆背包”,能让您把记忆带到各种 AI 应用里。它有一个统一的内存层,始终跟着你,让各种助手和 AI Agent 能在不同应用中记住重要的事情。OpenMemory MCP 一经发布,就。下文对详细剖析之。
2025-06-17 10:36:31
1138
原创 LLM应用平台超详细指南(二)5大平台功能横向对比:Dify、n8n、Coze、Fastgpt、Ragflow
为了帮助大家更清晰地了解这五个平台的区别和优势,这里整理了一张详细的对比表,从多个维度进行客观分析:其中Coze目前不是免费的了从实际体验来看,如果你是刚接触AI应用开发,希望快速看到成果,是最容易上手的选择。如果你的工作或者业务涉及多个系统和服务之间的数据流转,需要自动化处理,的强大自动化工作流会为你节省超多时间。想搭建企业内部智能知识库或者Q&A系统,优先考虑,它们在RAG方面都比较强,FastGPT更轻量、Ragflow更重(但上限更高)对于有长期规划、需要构建可扩展企业级AI应用的团队,
2025-06-16 20:00:00
558
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人