【华为OD-E卷 - 112 任务最优调度 100分(python、java、c++、js、c)】

【华为OD-E卷 - 任务最优调度 100分(python、java、c++、js、c)】

题目

给定一个正整数数组表示待系统执行的任务列表,数组的每一个元素代表一个任务,元素的值表示该任务的类型。
请计算执行完所有任务所需的最短时间。
任务执行规则如下:
任务可以按任意顺序执行,且每个任务执行耗时间均为1个时间单位 两个同类型的任务之间必须有长度为N个单位的冷却时间,比如N为2时,在时间K执行了类型3的任务,那么K+1和K+2两个时间不能执行类型3任务 系统在任何一个单位时间内都可以执行一个任务,或者等待状态。 说明:数组最大长度为1000,数组最大值1000

输入描述

  • 第一行记录一个用半角逗号分隔的数组,数组长度不超过1000,数组元素的值不超过1000, 第二行记录任务冷却时间,N为正整数,N<=100

输出描述

  • 输出为执行完所有任务所需的最短时间

用例

用例一:
输入:
2,2,2,3
2
输出:
7

### 华为OD机试糖果问题的Python解题思路 #### 问题描述 小明从糖果盒中随意抓取一定数量的糖果,每次可以执行三种操作之一:取出一半糖果并舍去余数;如果当前糖果数目为奇数,则可以从盒子中再拿一个糖果或将手里的一个糖果放回去。目标是最少经过几次这样的操作能够使手中的糖果变为一颗。 为了达到这个目的,采用贪心策略来解决问题[^3]。具体来说,在每一步都尽可能快速地减少糖果的数量直到只剩下一颗为止。当遇到奇数个糖果时,优先考虑加一而不是减一,因为这样可以在下一轮更有效地通过除以2的方式大量削减糖果总数。 #### 贪婪算法析 对于任意正整数n表示初始糖果数: - 如果 n 是偶数,则直接将其除以2; - 若 n 为奇数,则判断 (n+1)/2 和 (n−1)/2 的大小关系,选择较小的那个作为下一步的结果,这是因为我们希望更快接近1。 这种做法基于这样一个事实——当我们面对两个连续的奇数值时,较大的那个总是可以通过增加1变成一个小得多的新值(即其半数),而较小的一个则需要两次操作才能完成同样的效果(先减后除)[^4]。 #### Python代码实现 下面给出了解决上述问题的具体Python程序: ```python def min_steps_to_one(n): steps = 0 while n != 1: if n % 2 == 0: n //= 2 elif ((n + 1) // 2) < ((n - 1) // 2): n += 1 else: n -= 1 steps += 1 return steps if __name__ == "__main__": candy_count = int(input().strip()) print(min_steps_to_one(candy_count)) ``` 此函数接收一个参数`n`代表起始的糖果数量,并返回将这些糖果减少到只有一个所需的最小步数。主程序部读入用户输入的数据并调用该方法打印最终结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CodeClimb

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值