2020多校第一场1005

本文介绍了一种利用斐波拉契数列的通项公式进行高效求解的方法,通过二次剩余和逆元得出常数,多项式展开发现等比数列规律,遍历k等比求和,并使用逆元求组合数,提供了详细的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

思路

利用斐波拉契数列的通项公式。
先利用二次剩余和逆元得出三个常数。
将式子多项式展开,发现等比数列的规律。
遍历k,等比求和,用逆元求组合数。

代码

#include <iostream>
#include <string.h>
#include <stdio.h>

using namespace std;
typedef long long LL;
const int N = 100005;
const LL MOD = 1000000009;

LL fac[N],A[N],B[N];

void Init()
{
    fac[0] = 1;
    for(int i=1; i<N; i++)
        fac[i] = fac[i-1] * i % MOD;
    A[0] = B[0] = 1;
    for(int i=1; i<N; i++)
    {
        A[i] = A[i-1] * 691504013 % MOD;
        B[i] = B[i-1] * 308495997 % MOD;
    }
}

LL quick_mod(LL a,LL b,LL MOD)
{
    LL ans = 1;
    a %= MOD;
    while(b)
    {
        if(b & 1)
        {
            ans = ans * a % MOD;
            b--;
        }
        b >>= 1;
        a = a * a % MOD;
    }
    return ans;
}

LL Solve(LL n,LL k)
{
    LL ans = 0;
    for(int r=0; r<=k; r++)
    {
        LL t = A[k-r] * B[r] % MOD;
        LL x = fac[k];
        LL y = fac[k-r] * fac[r] % MOD;
        LL c = x * quick_mod(y,MOD-2,MOD) % MOD;
        LL tmp = t * (quick_mod(t,n,MOD) - 1) % MOD * quick_mod(t-1,MOD-2,MOD) % MOD;
        if(t == 1) tmp = n % MOD;
        tmp = tmp * c % MOD;
        if(r & 1) ans -= tmp;
        else      ans += tmp;
        ans %= MOD;
    }
    LL m = quick_mod(383008016,MOD-2,MOD);
    ans = ans * quick_mod(m,k,MOD) % MOD;
    ans = (ans % MOD + MOD) % MOD;
    return ans;
}

int main()
{
    int T;
    LL n,k;
    Init();
    scanf("%d",&T);
    while(T--)
    {
        cin>>n>>k;
        cout<<Solve(n,k)<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值