通俗地讲讲数据降维的原理

什么是数据降维?关于这个问题,很多专家的说法都非常学术,估计很多普通人听不懂。所以,这里用通俗的语言解释一下,希望有助于更多的入门新人理解。

举一个简单的例子:假设一个小学的班级有5个学生,每个人有2们考试成绩,语文和数学。A同学的语文是100分,数学是100分;B同学的语文是90分,数学是100分;C同学的语文是80分,数学是100分;D同学的语文是70分,数学是100分;E同学的语文是60分,数学是100分。

对这个场景,我们要注意到,每位同学的数学成绩都是一样的,都是100分。

这时,如果我们提到“语文是80分,数学是100分的那个同学”,你一定知道我们指的一定是同学C。

但是,如果我们只说“语文是80分的那个同学”,你是不是也知道我们指的一定是同学C!

这就是一个将二维数据降维到一维数据的例子,因为大家的数学都是100分,所以每个同学的数学数据对区分同学之间的差异没有任何价值,仅仅使用语文数据(即一维数据)就足够了,而且用来区分同学100%够用。

所以,做数据分析时,常说的,如果一个维度的数据在各个样本之间的差异很小(用专业的话说就是方差很小)的话,这个数据维度就越没有价值。只有在各个样本之间的差异很大的数据维度(用专业的话说就是方差很大的维度),才值得保留。

这是一个非常浅显易懂的例子。稍微加入一些专业的表述,我们可以用一个二维坐标系来表示这5位同学,x轴代表语文的分数,y轴代表数学的分数,他们的坐标分别是:A(100,100), B(90,100),  C(80,100), D(70,100),  E(60,100)。

你看到了什么?没错,它们都位于y=100这条直线上,所不同的是x坐标值。


 

因此,在这个场景下,我们完全可以将一个含x轴和y轴的二维坐标系,转换为一个只含有x轴的一维坐标系。

懂了上面的道理,你就理解了降维的原理。

在上面的场景中,我们看到,语文分数和数学分数完全无关,因为无论语文分数多少,数学都是100分。用专业的语言讲,就是这两个特征是正交的(即相关系数为0)。因为是正交,我们很容易对这个场景进行处理,那就是直接在二维坐标系中删掉y轴,只保留x轴就够了。

在现实中,场景可就没这么简单了。通常,2个变量会有一定的相关度。即便是不相关,也不会像上面那个场景那么容易看出来。比如下面举个例子。

另一个班,还是5位同学,语文分数和数学分数转换为坐标分别是:A(100,60), B(90,70),  C(80,80), D(70,90),  E(60,100)。

你可能觉得,这是一个完全负相关的数据啊!没错,不过,这只是一个从当前坐标系看到的现象。

实际上,从数据降维的角度讲,我们可以将x轴和y轴的两个直角坐标轴,同时绕着原点顺时针旋转45%,这时你看到的是下面的图像。

没错,坐标轴旋转后,这个场景变成了第一个班级的场景,大家的y坐标都是 80*根号2,不同的只是x坐标值。至于坐标轴的转换公式,这里就细说,在我上一篇的文章中提到过。

其实,这就是数据降维的最基本道理,无论是用于数据降维的主成分分析技术还是因子分析技术,都是这个逻辑,只是场景不再是这么简单的小学生,而是维度更多的大数据了。

复杂的模型,背后往往都是最朴素的思考方法,希望这几个例子能让新人们理解到底数据降维是怎么回事。

(An Actuary)

<think>嗯,用户想了解主成分分析(PCA)是否可以用于以及如何实现。首先,我得确认PCA的基本概念和用途。根据引用[2],PCA确实是一种方法,通过保留重要特征去除噪声和不重要的特征,提升数据处理速度。接下来需要解释原理,可能需要从方差最大化开始,因为引用[3]提到PCA是在高数据中寻找最大方差的方向,投影到更小的子空间。然后要说明协方差矩阵和特征值分解,这部分可能需要数学公式,比如协方差矩阵的计算和特征向量的选择。 然后是关于实现的步骤。用户可能需要具体的步骤说明,比如数据标准化、计算协方差矩阵、特征分解、选择主成分、投影数据。每个步骤需要详细说明,例如标准化是减去均值除以标准差,协方差矩阵用样本数据计算,特征值分解后的排序,选择前k个特征向量组成变换矩阵,最后数据投影到新空间。 应用场景部分,引用[2]提到了的优点,比如节省时间成本,去噪,提升算法效率。所以应该举几个例子,如图像处理、金融风险评估、生物信息学,这些领域的数据度高,适合PCA处理。 最后是Python实现,引用[3]提到了Python实例,可能需要用sklearn的PCA类。示例代码应包括数据标准化、PCA模型拟合、转换数据,并解释各参数如n_components的作用。可能需要提醒用户注意数据预处理的重要性,以及如何选择主成分数量,比如累计方差贡献率。 在相关问题部分,应该考虑用户可能进一步的问题,比如与LDA的区别、如何确定主成分数量、优缺点、处理缺失数据的方法等。这些扩展问题可以帮助用户更深入理解PCA的应用和限制。 需要注意的是,回答中要正确使用LaTeX格式,行内公式用$...$,独立公式用$$...$$,并确保数学符号正确,比如协方差矩阵、特征值分解的公式。同时,引用标记要自然添加在相关段落末尾,例如关于优点的部分引用[^2],方差最大化原理引用[^3]等。 总结来说,回答需要结构清晰,先讲原理,再讲步骤,应用场景,代码示例,最后相关问题。要确保每个部分都准确引用提供的资料,并且语言通俗易懂,帮助用户逐步理解PCA的过程和实现方法。</think>### 主成分分析(PCA)原理及应用 #### 一、PCA原理 主成分分析(PCA)是一种**无监督线性技术**,其核心思想是通过正交变换将原始高数据投影到低子空间,同时保留数据中**最大方差**的方向。具体步骤如下: 1. **数据标准化** 对原始数据 $X_{m \times n}$(m个样本,n个特征)进行标准化,使每个特征的均值为0,方差为1: $$ X_{\text{std}} = \frac{X - \mu}{\sigma} $$ 2. **计算协方差矩阵** 协方差矩阵 $C_{n \times n}$ 反映特征间的相关性: $$ C = \frac{1}{m-1} X_{\text{std}}^T X_{\text{std}} $$ 3. **特征值分解** 对协方差矩阵进行特征分解,得到特征值 $\lambda_i$ 和对应的特征向量 $v_i$。特征值大小表示对应主成分的方差贡献度。 4. **选择主成分** 按特征值从大到小排序,选择前 $k$ 个主成分(通常使累计方差贡献率超过85%),构建投影矩阵 $W_{n \times k}$。 5. **数据投影** 将原始数据映射到低空间: $$ Z_{m \times k} = X_{\text{std}} \cdot W $$ #### 二、PCA应用场景 1. **高数据可视化**(如将多数据至2D/3D绘图) 2. **去噪与特征压缩**(图像处理、语音信号处理) 3. **加速机器学习算法**(减少特征度,低计算复杂度) 4. **金融风险评估**(提取股票市场主要波动因素) 5. **生物信息学**(基因表达数据分析) #### 三、Python实现示例 ```python from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler # 数据标准化 scaler = StandardScaler() X_std = scaler.fit_transform(X) # 创建PCA模型并拟合数据 pca = PCA(n_components=2) # 保留2个主成分 X_pca = pca.fit_transform(X_std) # 查看方差贡献率 print("累计方差贡献率:", sum(pca.explained_variance_ratio_)) ``` #### 四、PCA优缺点 - **优点** - 去除特征间冗余信息 - 提高算法效率,缓解度灾难 - 正交变换避免过拟合风险 - **缺点** - 假设数据线性关系,对非线性结构效果差 - 主成分的解释性可能较弱
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值