基于MATLAB的异常值鲁棒性极限学习机(ORELM)回归预测

191 篇文章 ¥59.90 ¥99.00
文章介绍了如何使用MATLAB实现异常值鲁棒性极限学习机(ORELM)模型进行回归预测。ORELM基于极限学习机(ELM),通过鲁棒性损失函数减少异常值影响,提高模型预测性能。文中提供了MATLAB源代码示例,展示从数据预处理到模型构建、训练和预测的全过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于MATLAB的异常值鲁棒性极限学习机(ORELM)回归预测

异常值(Outliers)是指在数据集中与其他观测值明显不同的数据点。在回归分析中,异常值可能会对模型的拟合效果产生不良影响,导致预测结果的不准确性。为了解决这个问题,我们可以使用异常值鲁棒性极限学习机(ORELM)模型来进行回归预测。本文将介绍如何使用MATLAB实现ORELM模型,并通过源代码进行演示。

  1. ORELM模型简介

ORELM是一种基于极限学习机(ELM)的回归模型,它具有异常值鲁棒性。ELM是一种单隐层前馈神经网络模型,其隐层权重是通过随机生成的方式进行初始化的,然后通过正则化方法进行训练。相比传统的神经网络训练算法,ELM具有快速训练速度和良好的泛化性能。

ORELM模型在ELM的基础上进行了改进,引入了异常值鲁棒性。它通过使用鲁棒性损失函数来减小异常值对模型的影响,从而提高了模型的鲁棒性和预测性能。

  1. MATLAB实现ORELM模型

下面是使用MATLAB实现ORELM模型的源代码:

% 步骤1:准备数据
% 假设我们有一个回归问题的数据集,包括输入特征X和目标变量Y
X = % 输入特征
Y =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值