基于MATLAB的异常值鲁棒性极限学习机(ORELM)回归预测
异常值(Outliers)是指在数据集中与其他观测值明显不同的数据点。在回归分析中,异常值可能会对模型的拟合效果产生不良影响,导致预测结果的不准确性。为了解决这个问题,我们可以使用异常值鲁棒性极限学习机(ORELM)模型来进行回归预测。本文将介绍如何使用MATLAB实现ORELM模型,并通过源代码进行演示。
- ORELM模型简介
ORELM是一种基于极限学习机(ELM)的回归模型,它具有异常值鲁棒性。ELM是一种单隐层前馈神经网络模型,其隐层权重是通过随机生成的方式进行初始化的,然后通过正则化方法进行训练。相比传统的神经网络训练算法,ELM具有快速训练速度和良好的泛化性能。
ORELM模型在ELM的基础上进行了改进,引入了异常值鲁棒性。它通过使用鲁棒性损失函数来减小异常值对模型的影响,从而提高了模型的鲁棒性和预测性能。
- MATLAB实现ORELM模型
下面是使用MATLAB实现ORELM模型的源代码:
% 步骤1:准备数据
% 假设我们有一个回归问题的数据集,包括输入特征X和目标变量Y
X = % 输入特征
Y =