基于麻雀算法优化的核极限学习机实现风电数据预测

191 篇文章 ¥59.90 ¥99.00
本文探讨了利用麻雀算法优化核极限学习机(ELM)进行风电发电量预测的方法。ELM作为一种高效的机器学习算法,结合麻雀算法的全局搜索能力,可以提升预测准确性。文章提供了MATLAB实现代码,详细阐述了算法原理及优化过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在风能行业中,准确预测风电发电量对于电网调度和能源管理至关重要。核极限学习机(ELM)是一种高效的机器学习算法,已被广泛应用于风电数据预测中。为了进一步提升ELM算法的性能,我们可以采用优化算法进行参数调优。在本文中,我们将介绍如何使用麻雀算法对核极限学习机进行优化,并提供相应的MATLAB代码。

首先,让我们了解一下核极限学习机(ELM)的基本原理。ELM是一种单层前馈神经网络,其输入层与隐藏层之间的连接权重是随机初始化的,而输出层的权重则通过最小二乘法进行计算。ELM通过随机初始化隐藏层权重和偏置,可以快速训练神经网络模型,并在保持高预测准确性的同时降低计算负担。

接下来,我们将介绍麻雀算法的基本原理,并将其应用于ELM的参数优化。麻雀算法是一种启发式优化算法,受到麻雀集群行为的启发。该算法模拟了麻雀在觅食过程中的行为,通过集体智能寻找最优解。麻雀算法包括初始化种群、评估适应度、更新位置和选择最优解等步骤。

下面是使用MATLAB实现基于麻雀算法优化的核极限学习机的代码:

% 加载训练数据和测试数据
load('train_data.mat'); 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值