基于卷积神经网络的MNIST手写数字数据库训练和识别(Matlab实现)

191 篇文章 ¥59.90 ¥99.00

在计算机视觉领域,MNIST手写数字数据库是一个经典的数据集,常用于测试和验证图像分类算法的性能。本文将介绍如何使用Matlab实现基于卷积神经网络(CNN)的MNIST手写数字数据库的训练和识别。

1. 数据集介绍

MNIST手写数字数据库包含了一系列的手写数字图像,每张图像的大小为28x28像素。数据集分为训练集和测试集,其中训练集包含60,000张图像,测试集包含10,000张图像。每张图像都标有对应的数字标签,范围从0到9。

2. 环境准备

在开始之前,我们需要准备以下环境和工具:

  • Matlab:确保已安装并配置好Matlab软件。
  • 深度学习工具箱:在Matlab中选择合适的版本并安装深度学习工具箱。

3. 构建卷积神经网络模型

在这个实例中,我们将使用一个简单的CNN模型来训练和识别MNIST手写数字。以下是CNN模型的结构:

layers = [
    imageInputLayer([
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值