在计算机视觉领域,MNIST手写数字数据库是一个经典的数据集,常用于测试和验证图像分类算法的性能。本文将介绍如何使用Matlab实现基于卷积神经网络(CNN)的MNIST手写数字数据库的训练和识别。
1. 数据集介绍
MNIST手写数字数据库包含了一系列的手写数字图像,每张图像的大小为28x28像素。数据集分为训练集和测试集,其中训练集包含60,000张图像,测试集包含10,000张图像。每张图像都标有对应的数字标签,范围从0到9。
2. 环境准备
在开始之前,我们需要准备以下环境和工具:
- Matlab:确保已安装并配置好Matlab软件。
- 深度学习工具箱:在Matlab中选择合适的版本并安装深度学习工具箱。
3. 构建卷积神经网络模型
在这个实例中,我们将使用一个简单的CNN模型来训练和识别MNIST手写数字。以下是CNN模型的结构:
layers = [
imageInputLayer([