LAMMPS团簇的K-means聚类识别 —— Matlab分析

本文介绍了如何利用K-means聚类算法在Matlab中对LAMMPS模拟的原子团簇进行识别。通过模拟Cu的fcc结构,执行LAMMPS输入脚本生成原子位置数据,然后使用Matlab进行K-means聚类,将原子划分为不同簇并可视化。聚类结果有助于分析材料的性质和行为,如密度、结合能等,并可研究相变和表面形貌。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LAMMPS团簇的K-means聚类识别 —— Matlab分析

概述:
在材料科学和计算物理领域,分子动力学模拟是一种重要的工具。LAMMPS(Large-scale Atomic/Molecular Massively Parallel Simulator)是一个常用的分子动力学软件包,广泛应用于模拟材料行为。在LAMMPS中,团簇识别是一项关键任务,用于确定材料中的原子团簇结构。本文将介绍如何使用K-means聚类算法来识别LAMMPS模拟结果中的团簇,并使用Matlab进行进一步的分析和可视化。

  1. LAMMPS模拟设置:
    首先,我们需要进行LAMMPS模拟,生成原子位置数据文件。以下是一个简单的示例输入脚本:
# LAMMPS input script for molecular dynamics simulation

### 设置模拟相关参数 ###
units          metal
dimension      3
boundary       p p p
atom_style     atomic

### 定义材料类型、原子量和势函数 ###
lattice        fcc 3.52
region         box block 0 10 0 10 0 10 units lattice
create_box     1 box
create_atoms   1 box
mass           1 63.546
pair_style     eam/alloy
pair_coeff     * * Cu_u3.eam.alloy Cu

### 设定温度和尺寸 ###
velocity       all create 30
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值