参数辨识和分类识别的EM算法实现(Matlab)
EM算法(Expectation-Maximization Algorithm)是一种经典的统计学习算法,常用于参数辨识和分类识别问题。本文将介绍如何使用Matlab实现EM算法,并提供相应的源代码。
-
EM算法简介
EM算法是一种迭代优化算法,用于估计含有隐变量的概率模型参数。它通过两个步骤交替进行,即E步和M步。E步通过计算隐变量的后验概率来估计模型参数的期望值,M步通过最大化似然函数来更新模型参数。重复执行E步和M步,直到收敛到局部最优解。 -
参数辨识问题
参数辨识是指从观测数据中估计模型的参数值。在EM算法中,参数辨识问题可以通过最大化观测数据的似然函数来解决。以高斯混合模型为例,假设观测数据由多个高斯分布混合而成,每个高斯分布对应一个隐变量,需要估计每个高斯分布的均值和方差。
以下是使用EM算法进行高斯混合模型参数辨识的Matlab代码示例:
% 生成观测数据
mu_true = [1, 4