参数辨识和分类识别的EM算法实现(Matlab)

92 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用Matlab实现EM算法解决参数辨识和分类识别问题。通过高斯混合模型为例,展示了EM算法在E步和M步中的应用,提供了相应的Matlab代码示例,包括参数辨识的模型训练和分类识别的后验概率计算,帮助理解EM算法在实际问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参数辨识和分类识别的EM算法实现(Matlab)

EM算法(Expectation-Maximization Algorithm)是一种经典的统计学习算法,常用于参数辨识和分类识别问题。本文将介绍如何使用Matlab实现EM算法,并提供相应的源代码。

  1. EM算法简介
    EM算法是一种迭代优化算法,用于估计含有隐变量的概率模型参数。它通过两个步骤交替进行,即E步和M步。E步通过计算隐变量的后验概率来估计模型参数的期望值,M步通过最大化似然函数来更新模型参数。重复执行E步和M步,直到收敛到局部最优解。

  2. 参数辨识问题
    参数辨识是指从观测数据中估计模型的参数值。在EM算法中,参数辨识问题可以通过最大化观测数据的似然函数来解决。以高斯混合模型为例,假设观测数据由多个高斯分布混合而成,每个高斯分布对应一个隐变量,需要估计每个高斯分布的均值和方差。

以下是使用EM算法进行高斯混合模型参数辨识的Matlab代码示例:

% 生成观测数据
mu_true = [1, 4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值