题解
T1 三点连通块
考虑每个点作为中心时,方案数量实际上就是从相邻点中任意选两个组成三点连通块。
因此统计每个点的度,记为d[i]d[i]d[i],对每个点来说方案数是d[i]∗(d[i]−1)/2d[i] * (d[i] - 1) / 2d[i]∗(d[i]−1)/2。
加和即可。注意long long。
#include<bits/stdc++.h>
using namespace std;
long long son[100010],k;
long long q[100010];
int main(){
int n;
cin>>n;
for (int i=1;i<n;i++){
int a,b;
cin>>a>>b;
son[a]++;
son[b]++;
}
for (int i=2;i<=n;i++){
q[i]=q[i-1]+i-1;
}
for (int i=1;i<=n;i++){
k+=q[son[i]];
}
cout<<k;
return 0;
}
T2 矩阵魔法
普通的模拟。
#include <bits/stdc++.h>
using namespace std;
int n,m;
int a[1505][1505];
int b[1505][1505];
int cnt=0;
void right(int x,int y,int r){
int sx=x-r,sy=y-r;
int ex=x+r,ey=y+r;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
b[i][j]=a[i][j];
}
}
for(int i=sx;i<=ex;i++){
for(int j=sy;j<=ey;j++){
b[x-y+j][x+y-i]=a[i][j];