浅说树上差分——点差分

我们前面也学过差分,现在的话我们就把他放到树上来做。因为这是树,所以会有点和边之分,所以树上差分也会分为 点差分边差分

引入

树上差分其实和线性差分没有什么区别,只不过是放到了树上的两点,而他们之间的最简路径就是可以类比成线性的两点之间的线段。
在这里插入图片描述
所以我们如果要对一条曲线进行操作的话,就是在树上跑差分,那么树上差分数组究竟是什么呢,他又代表着什么意思呢?这是一个值得深思的问题,也是困扰我很久的问题。

树上差分数组本质上存储的是 操纵方式,而不是简单的差值。例如一个点 x x x 的差分数组 p [ x ] = − 3 p[x]=-3 p[x]=3 代表这个点或这个点所对应的边被减去了3,而不是这个点或这个边等于-3,这是一个易错也易混的点。

相同的,对线性差分数组进行求前缀和的话,我们就可以得到真实的答案的值,那么类似的,在 树上差分数组中求子树和,就可以的到这个点的操纵方式,不过为什么要求子树和,而不求其它的,我也不知道,我也不敢问。
在这里插入图片描述

点差分

如果我们现在要对树上的一条路径上的点进行统一操作,比如说 +1 或 -2,我们应该如何完成?
首先是不是很容易想到暴力 dfs ?但是这样的时间复杂度是 O ( n 2 ) \cal O(n^2) O(n2) 的,不优秀。但是我们在学什么,是不是在学差分,那为什么不从差分的视角来考虑考虑?

如果我们要对一条 A → B A \rightarrow B AB 的路径进行+1的修改操作,那么首先我们肯定要在点 A A A B B B 两个位置进行修改对吧,又因为我们最后是通过求子树和来求得每个点的修改方式,所以不能影响 点 A A A 和 点 B B B 所对应的子树,所以我们可以非常明了的得到
p [ A ] + + , p [ B ] + + p[A]++,p[B]++ p[A]++,p[B]++
然后我们的目光不断向上看,发现基本上都没有问题,但是在他们的最近公共祖先那里除了岔子,为什么呢?因为二者是从两端慢慢爬上来的,这就会导致他们的 LCA 会被增加两次,所以我们又可以得到
p [ l c a ( A , B ) ] − − p[lca(A,B)]-- p[lca(A,B)]
我们继续往上看,发现点 A A A 和点 B B B 的最近公共祖先的父亲在计算子树和的时候任然会被增加一次,但是他应该是不能被修改的,所以我们还可以得到
p [ f a ( l c a ( A , B ) ) ] − − p[fa(lca(A,B))]-- p[fa(lca(A,B))]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值