学习周报1

本文探讨了基于移动边缘计算(MECC)的物联网资源管理策略,包括任务卸载、能量管理、计算迁移等关键技术。提出了D2D-ECN任务卸载、车辆偏好效用计算迁移及边缘合作缓存策略,并介绍了基于区块链的分布式计算迁移系统设计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

)

基于移动边缘计算的物联网资源管理策略研究

主要探究技术:针对MECC技术(移动边缘计算和存储技术)在物联网应用中面临的问题。致力于融合MECC与人工智能技术,通过研究任务卸载和能量管理、多址接入选择、移动感知的内容缓存、去中心化的计算迁移等问题,进而满足典型物联网应用场景中的多样化性能要求。

主要内容

1.基于D2D-ECN的任务卸载和能量调度策略研究

1.在该网络架构下,利用D2D直通技术将密集型任务卸载到一组资源闲置的设备中进行并行处理。
2.用能量采集技术来确保数据传输和业务处理的连续性(解决电池供能的设备可能出现计算中断的问题)
3.设计了一种任务卸载、计算资源分配和能量调度的联合优化问题(实现长期平均任务服务时延和系统长期平均能量消耗的最优折衷)
4.Q-Learning算法(可再生能源的随机性和信道状态的不确定性)
5.各种其他算法
上述的分布式任务卸载策略和计算迁移算法,能够显著地降低系统的能量消耗和业务的服务时延

2.面向车辆边缘计算网络的计算迁移策略研究

1.以服务时延最小为目标的车辆偏好效用和以最大化信息分享增益为目标的边缘服务器偏好效用
2.双向匹配理论的计算迁移机制来极大化资源供需双方的偏好
3.车辆接入模式选择和任务分发的联合优化算法(旨在在车辆高速移动的环境满足多样化的车联网应用需求并兼顾系统的能量消耗)
4.基于深度增强学习的多址接入协同计算迁移策略

3.移动感知的边缘合作缓存策略研究

基于集中式的宏蜂窝、分布式的路边单元和移动车辆的三方合作,设计了内容放置和内容传输的联合优化策略。

    目标:最小化系统的累积平均存储和资源使用开销,同时满足车辆获取内容的命中率和传输时延需求。

4.区块链赋能的分布式计算迁移系统设计

解决不信任问题
设计了一种基于计算迁移性能的用户名誉评估和共识机制,组成名誉值评估的计算迁移(资源交易和任务卸载)规则以智能合约的方式写入区块链中,当前名誉值最高的用户发起资源交易记录和名誉值的共识操作。

创新:斯坦克尔博格的差异化定价策略(极大化了资源供需双方的收益,采用后向回归法证明了均衡解的唯一性和最优性)

    创新1:斯坦克尔博格的差异化定价策略(极大化了资源供需双方的收益,采用后向回归法证明了均衡解的唯一性和最优性)
    创新2:联合的任务卸载和资源分配策略(实现了业务服务时延和算法复杂度的有效折衷)

基于区块链的可信分布式计算平台的设计与实现

介绍了一个将计算任务使用众包的方式动态分配到边缘网络节点上的分布式计算平台。
目的:平台将动态选取临近用户的满足用户要求的计算节点,组建临时的计算集群并执行计算任务,服务的提供商将不需要自己维护计算节点,也不需要考虑节点选取的问题,不同的服务可以共用同样的计算设备,使得维护成本大幅降低、资源利用更为有效。

出现的问题

信任问题

计算资源提供方与消费方存在信任问题,如何避免欺骗

异构化环境的资源整合问题

边缘网络上的计算设备不尽相同,运行环境、操作系统均有差异,如何在异构化的环境下整合计算资源是另一个必须解决的问题

解决方法

方法1

使用区块链智能合约建立计算任务与合约的关联,将分布式计算的整个过程使用智能合约进行跟踪、管理,实现可信交易。
任务分包流程 :
在这里插入图片描述

合约设计:在这里插入图片描述

方法2

结合容器技术实现一个简单的 Map-Reduce 计算框架,并与上面的合约相配合,实现可信分布式计算。
Map-Reduce 计算框架流程图:
在这里插入图片描述

其他:重新看了下上次几篇论文

### 深度学习周报最新进展概述 深度学习领域的发展日新月异,最新的研究动态通常集中在模型架构优化、训练效率提升以及跨学科应用等方面。以下是关于深度学习周报中的几个核心主题及其相关内容: #### 新兴框架与工具 近年来,多个新兴的深度学习框架不断涌现并得到广泛应用。例如,PyTorch Lightning 和 Hugging Face Transformers 提供了更高效的开发体验和预训练模型支持[^1]。这些工具不仅简化了复杂模型的设计过程,还显著提升了实验迭代的速度。 #### 关键论文进展 在自然语言处理 (NLP) 领域,《Scaling Laws for Neural Language Models》探讨了大规模参数量对性能的影响规律,并揭示了随着模型规模增加所带来的收益边界效应[^2]。而在计算机视觉方面,“Vision Transformer”系列文章展示了基于纯注意力机制构建图像分类器的可能性,挑战传统卷积神经网络的地位[^3]。 #### 技术趋势分析 联邦学习成为隐私保护场景下的热点方向之一;强化学习则继续向多智能体协作及真实世界机器人控制等领域深入探索 。此外 ,自监督 学习方法通过利用未标注数据来增强表示能力,在减少人工成本的同时提高了泛化效果 [^4]. ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased") inputs = tokenizer("Hello world!", return_tensors="pt") outputs = model(**inputs) print(outputs.logits) ``` 上述代码片段演示如何使用HuggingFace库加载BERT模型并对输入文本进行情感分类预测操作.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值