测试环境为4090台式机,显卡为RTX 4090,CPU是13700KF
先用nvidia-smi 查看cuda版本
这里的cuda为12.6,这个12.6跟后面安装的CUDA Toolkit的版本号可以不同。CUDA Toolkit的版本号必须小于等于12.6,因为paddlepaddle-gpu最高支持到cuda12.0,所以我们下载的CUDA Toolkit版本选择12.0,下载网页在CUDA Toolkit 12.0 Downloads | NVIDIA Developer
也可以直接用迅雷下载这个地址:
CUDA Toolkit是一个应用层的软件,跟显卡型号无关。
安装好后新增如下的两个环境变量:
还要在Path环境变量中新增路径:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.0\bin
如下图所示:
设置好环境变量后打开cmd,输入nvcc -V可以查看版本号,这里为12.0
还要安装cudnn(是应用层软件,跟显卡型号无关):
上这个网站下载cuDNN Archive | NVIDIA Developer
选择针对windows平台的cuda12的版本就行
下载好后是一个zip文件,解压后如下所示:
把红框内的3个文件夹copy到CUDA的安装目录,这个目录默认是:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.0
然后安装paddlepaddle-gpu
pip install paddlepaddle-gpu==2.6.1.post120 -f https://www.paddlepaddle.org.cn/whl/windows/mkl/avx/stable.html
然后再安装paddleocr
pip install paddleocr==2.7.3 -i https://pypi.tuna.tsinghua.edu.cn/simple