【论文学习】2016 CVPR 目标检测必读paper

本文介绍了2016年CVPR大会上关于目标检测的重要论文,包括Deep Residual Learning、YOLO、LocNet、HyperNet和Inside-outside Net。这些研究在速度、精度和上下文信息利用方面进行了创新,对后续的目标检测算法如SSD有着深远影响。

1、Deep residual learning for image recognition

        何凯明的代表作之一,获得了16年的bestpaper。文章不是针对目标检测来做的,但其解决了一个最根本的问题:更有力的特征。检测时基于Faster R-CNN的目标检测框架,使用ResNet替换VGG16网络可以取得更好的检测结果。(实际上,使用ResNet网络代替ZF, VGG, GoogleNet等网络模型无论在图像分类、目标检测还是图像分割等任务上都可以大大提高识别的准确率)

 

2、You only look once: Unified, real-time object detection

        这是16年的oral。这个工作在识别效率方面的优势很明显,可以做到每秒钟45帧图像,处理视频是完全没有问题的。YOLO最大贡献是提出了一种全新的检测框架——直接利用CNN的全局特征预测每个位置可能的目标,相比于R-CNN系列的region proposal+CNN 这种两阶段的处理办法可以大大提高检测速度。今年新出来的SSD方法虽然在识别率上边有了很大的提升,但YOLO的先驱作用是显而易见的。

 

3、LocNet: Improving Localization Accuracy for Object Detection

        IoU参数在Pascal VOC中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值