Gpt-oss-120b 和 gpt-oss-20b 是 OpenAI 发布的两个开源推理模型。现在 DigitalOcean 的用户在 Gradient AI 平台创建 GPU Droplet 服务器时,可以直接调用 gpt-oss-20b 与 gpt-oss-120b。在本教程中,我们将演示如何在 DigitalOcean 的 Gradient™ AI 平台上使用 gpt-oss-120B 构建一个客户支持 AI Agent。
核心要点
- 本教程展示了如何在 DigitalOcean 的 Gradient AI 平台上,使用 GPT-OSS 构建 AI 客户支持 AI Agent。
- 该过程包括准备相关数据、创建用于支撑 AI Agent回答的知识库,并通过 DigitalOcean API 或无代码用户界面(UI)部署 AI Agent。
- 最终生成的 AI Agent 能够提供准确且相关的客户支持,从而提升客户体验。
假设,我们将为一家虚构的、成立于 2027 年的生物技术公司 Mitofoundria 构建这个客户支持 AI Agent。Mitofoundria 是一家预防医学公司,生产个性化营养补充剂,帮助个体预防可能因遗传或环境因素而面临风险的健康问题。
这家虚构初创公司的网站迫切需要一个客户支持 AI Agent。
在 DigitalOcean 上使用知识库
不出所料,我们的客户支持的 AI Agent 需要基于真实信息来生成回答。知识库(Knowledge Bases)正是我们存储这些上下文信息的地方。请参考我们的知识库文档了解支持的文件格式。
https://docs.digitalocean.com/products/gradient-ai-platform/how-to/create-manage-agent-knowledge-bases
数据方面的准备
请仔细考虑如何为你的客户支持 AI Agent 准备数据。以下是 Mitofoundria 所需数据的示例表格,你可以参考类似的格式或所需收集的内容等:
数据来源 | 需收集内容 | 重要预处理步骤 |
工单日志(Ticket Logs) | 完整对话记录、标签(如“账单”、“物流”、“产品效果”、“副作用”、“基因数据问题”)、客户报告的症状 | 删除个人身份信息(PII),匿名化姓名和邮箱,屏蔽订单号,以及任何与基因或健康相关的个人信息 |
常见问题页面(FAQ pages) | 现有的问答对或长篇文本,涵盖产品使用方法、科学依据、常见副作用、订阅管理等 | 确保每个问答对长度适中;若从长文本生成问答对,应将长文章拆分为简短片段(<150 个 token),每段独立成文并提供清晰回答;特别注意涉及健康声明和免责声明的内容 |
在线聊天记录(Live chat transcripts) | 聚焦于产品咨询、补充剂定制、个人健康问题的客服与客户对话 | 隐去所有具体用户健康数据或基因标记;按主题分类(如“产品有效性”、“剂量问题”、“数据隐私”) |
产品文档(Product Documentation) | 补充剂的规格、成分、推荐剂量、禁忌症、科学白皮书等 | 按产品提取关键信息,包括每种补充剂所针对的特定基因标记或环境因素;创建结构化数据格式以便查询 |
科学文献与研究论文(Scientific Literature & Research Papers) | 公开可用的科学论文、临床研究、学术文章,涉及补充剂成分及其对人体生物学和遗传学的影响 | 总结关键发现和结论;创建简洁、易于代理理解的摘要,用通俗语言解释复杂的科学概念;并与内部产品文档交叉引用 |
由于 Mitofoundria 是一家我们虚构出来的公司,上述数据将通过大语言模型(LLM)合成生成。我们使用了 Gemini 模型。以下是我们的提示词:
你的任务是为以下五个类别生成逼真的数据,确保每个条目都符合指定要求和预处理步骤。
1. 工单日志:
生成 10 条完整的客户支持对话记录。每条记录应包含完整对话、相关标签(如“账单”、“物流”、“产品效果”、“副作用”、“基因数据问题”)以及客户报告的症状。
预处理要求: 删除所有个人身份信息(PII),匿名化姓名和电子邮件,屏蔽订单号及任何基因或健康相关个人信息。
2. 常见问题页面:
创建 20 个问答对或长篇文本,内容涵盖产品使用方法、科学依据、常见副作用、订阅管理等。
预处理要求: 确保每个问答对长度合理;若从长文本生成,请将其拆分为“简短片段”(少于 150 个 token),每段独立且回答明确。
3. 在线聊天记录:
生成 10 段不同的客服与客户对话,聚焦于产品咨询、补充剂定制、个人健康担忧等。
预处理要求: 隐去任何具体的用户健康数据或基因标记;按主题分类(如“产品有效性”、“剂量问题”、“数据隐私”)。
4. 产品文档:
为三种不同的虚构 Mitofoundria 补充剂生成关键信息,包括成分、推荐剂量、禁忌症,并说明每种补充剂所针对的基因标记或环境因素。
预处理要求: 以结构化、易于查询的格式呈现信息。
5. 科学文献与研究论文:
为五篇不同的公开科学论文或临床研究创建简明摘要,内容涉及补充剂成分及其对人体生物学和遗传学的影响。
预处理要求: 总结关键发现和结论;创建“代理友好型”摘要,用简单语言解释复杂科学概念;并与之前生成的内部产品文档进行交叉引用。
实现客户支持 AI Agent 的两种方式
有两种方式可以实现我们的客户支持 AI Agent:
- 使用 DigitalOcean API
- 使用控制面板(Control Panel)
API 允许你以编程方式实现 AI Agent,而控制面板则提供无代码操作界面。
使用 DigitalOcean API 创建 AI Agent
首先创建一个**个人访问令牌(Personal Access Token)**。获取令牌后,将其粘贴到以下 curl 命令中,并根据你的客户支持 AI Agent 需求配置其他参数。注意:如果你还没有知识库,可能需要先创建一个。
curl -X POST \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $DIGITALOCEAN_TOKEN" \
"https://api.digitalocean.com/v2/gen-ai/agents" \
-d '{
"name": "Mitofoundria Customer Support Agent",
"model_uuid": "95ea6652-75ed-11ef-bf8f-4e013e2ddde4",
"instruction": "你是 Mitofoundria 的友好且专业的客户支持代理,这是一家预防医学公司。你的目标是帮助客户解答有关个性化补充剂、订阅管理以及科学基础的问题。请使用提供的知识库准确、简洁地回答问题,保持专业且富有同理心的语气。",
"description": "Mitofoundria 的客户支持代理,该公司专注于个性化预防性营养补充剂。",
"project_id": "YOUR_PROJECT_ID",
"tags": [
"mitofoundria",
"customer-support",
"preventative-medicine"
],
"region": "tor1",
"knowledge_base_uuid": [
"YOUR_KNOWLEDGE_BASE_UUID"
]
}'
使用 UI 部署 GPT-OSS
步骤 0:登录 DigitalOcean 账户
还没有 DigitalOcean 账户?别担心,点击这里注册即可!
步骤 1:创建项目
登录后,创建一个新项目。
步骤 2:进入代理平台
通过点击此链接或点击 DigitalOcean 控制面板中下方圈出的图标进入代理平台。
步骤 3:选择知识库
选择一个已有知识库;如果没有,可以创建一个新的。
创建知识库时需要提供数据源。你可以添加多个数据源,支持的格式包括:
- 文件上传
- URL(用于网页抓取)
- Spaces 存储桶或 Amazon S3 存储桶中的数据
上传文件时,单个文件不得超过 2GB,每次上传不超过 100 个文件。你还需选择一个嵌入模型(embedding model)。请注意,知识库需要一定时间进行索引——通常需要约五分钟或更长时间,系统会在此期间处理、嵌入并存储你的数据。
步骤 4:指定工作区(Workspace)
工作区将相关的代理归入同一空间,便于管理、团队共享和结构化性能评估。所有代理必须属于某个工作区。创建代理时可指定其所属工作区,之后也可自由移动。
步骤 5:在 Playground 中测试代理
代理部署完成后,使用 Playground 进行测试。提出问题并评估其回答,确保其按预期运行。
步骤 6:使用测试用例评估代理性能
在 Gradient 平台上,你可以创建“评估测试用例”。通过创建包含一组提示词的数据集,并在代理上运行评估,即可测试其表现。运行完成后,你可以查看结果,包括各项指标得分以及代理对每个提示的回答详情。
步骤 7:管理代理端点(Endpoint)
代理创建后会自动生成端点(Endpoint),即你可以集成到应用中的 URL。你可以通过该端点发送文本请求,并接收 JSON 格式的响应。此外,还可以通过端点自定义请求设置,例如最大生成 token 数、检索信息的处理方式等。
结论
在本教程中,借助 DigitalOcean 的 Gradient AI 平台,你不仅仅是在构建一个聊天机器人——而是在打造一个真正理解客户的客户支持 AI Agent。通过将回答建立在你自己的数据基础上,你可以获得更准确、更相关的结果。无论你选择使用 API 还是无代码 UI,最终都能实现:更快、更智能的客户支持,并随业务增长而灵活扩展。
如果你希望了解如何选择适合搭建 AI Agent 的 GPU Droplet服务器,欢迎咨询 DigitalOcean中国区独家战略合作伙伴卓普云aidroplet.com。目前DigitalOcean可提供包括H200、H100、AMD MI325X、AMD MI300X、RTX 6000 Ada、 RTX 4000 Ada、L40S、A100等型号的GPU服务器按需实例或裸金属服务器。
常见问题解答(FAQ)
Q:为什么知识库对 AI Agent 很重要?
A:知识库存储了 AI Agent 用于支撑其回答的上下文和信息,确保回答的准确性和相关性。
Q:为准备客户支持 AI Agent,推荐使用哪些类型的数据?
A:推荐的数据类型包括工单日志、常见问题页面、在线聊天记录、产品文档以及科学文献/研究论文。
Q:虚构公司 Mitofoundria 的数据是如何生成的?
A:数据是通过大语言模型(LLM,具体为 Gemini)根据详细提示词合成生成的,提示词明确了所需类别和预处理步骤。
Q:在 DigitalOcean 上实现客户支持 AI Agent 的两种方式是什么?
A:可以通过 DigitalOcean API 实现程序化控制,或通过控制面板(无代码界面)进行操作。
Q:使用 DigitalOcean API 创建代理时,个人访问令牌的作用是什么?
A:个人访问令牌用于在调用 API 创建或管理代理时进行身份验证。
Q:通过 UI 部署代理时,项目(Project)的作用是什么?
A:项目用于组织和管理资源,所有代理都必须归属于某个项目。
Q:如何在 DigitalOcean 平台上创建知识库?
A:通过添加数据源(文件上传、URL 或 Spaces/S3 桶数据)并选择嵌入模型来创建知识库。
Q:Gradient 平台上的“工作区”(Workspaces)是什么?
A:工作区将相关代理归入同一空间,便于管理、团队协作和结构化性能评估。
Q:如何测试已部署的代理?
A:可以使用 Playground 提出问题并评估其回答。
Q:如何更正式地评估代理的性能?
A:在 Gradient 平台上,可以创建包含提示词数据集的“评估测试用例”,运行评估后查看指标得分和每个提示的回答分析。