python3插值法

目录

插值法简介

python函数

splreph函数参数

splev

一次样条函数插值

小区间仔细观察

三次精确插值

小结


插值法简介

插值法又称“内插法”,是利用函数f (x)在某区间中已知的若干点的函数值,作出适当的特定函数,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。

样条插值在金融学中往往用于估算未包含在原始观测点中的自变量数据点的因变量值。

python函数

splreph函数参数

splev

一次样条函数插值

#coding:UTF-8
import numpy as np
import scipy.interpolate as spi
import matplotlib.pyplot as plt

x = np.linspace(-2*np.pi,2*np.pi)
def f(x):
    return np.sin(x) + 0.5*x

ipo = spi.splrep(x,f(x),k=1)
iy = spi.splev(x,ipo)

plt.plot(x,f(x),'b',label = 'f(x)')
plt.plot(x,iy,'r.',label='interpolation')
plt.legend(loc = 0)
plt.grid(True)
plt.xlabel('x')
plt.ylabel('f(x)')
plt.show()
print(np.allclose(f(x),iy))

小区间仔细观察

#coding:UTF-8
import numpy as np
import scipy.interpolate as spi
import matplotlib.pyplot as plt

x = np.linspace(-2*np.pi,2*np.pi)
def f(x):
    return np.sin(x) + 0.5*x

ipo = spi.splrep(x,f(x),k=1)
iy = spi.splev(x,ipo)

xd = np.linspace(1.0,3.0)
iyd = spi.splev(xd,ipo)
plt.plot(xd,f(xd),'b',label = 'f(xd)')
plt.plot(xd,iyd,'r.',label='interpolation')
plt.legend(loc = 0)
plt.grid(True)
plt.xlabel('xd')
plt.ylabel('f(xd)')
plt.show()
print(np.allclose(f(xd),iyd))  #是否完全拟合
print(np.sum((f(xd)-iyd)**2)/len(xd)) #MES

三次精确插值

ipo = spi.splrep(x,f(x),k=3)

小结

在可应用样条插值的情况下,可以获得比最小二乘回归法更好的近似结果,但数据必须是无噪声的,而且样条插值仅限低纬度问题,计算要求较高,所用时间比回归法长得多。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海人001

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值