目录
插值法简介
插值法又称“内插法”,是利用函数f (x)在某区间中已知的若干点的函数值,作出适当的特定函数,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。
样条插值在金融学中往往用于估算未包含在原始观测点中的自变量数据点的因变量值。
python函数
splreph函数参数
splev
一次样条函数插值
#coding:UTF-8
import numpy as np
import scipy.interpolate as spi
import matplotlib.pyplot as plt
x = np.linspace(-2*np.pi,2*np.pi)
def f(x):
return np.sin(x) + 0.5*x
ipo = spi.splrep(x,f(x),k=1)
iy = spi.splev(x,ipo)
plt.plot(x,f(x),'b',label = 'f(x)')
plt.plot(x,iy,'r.',label='interpolation')
plt.legend(loc = 0)
plt.grid(True)
plt.xlabel('x')
plt.ylabel('f(x)')
plt.show()
print(np.allclose(f(x),iy))
小区间仔细观察
#coding:UTF-8
import numpy as np
import scipy.interpolate as spi
import matplotlib.pyplot as plt
x = np.linspace(-2*np.pi,2*np.pi)
def f(x):
return np.sin(x) + 0.5*x
ipo = spi.splrep(x,f(x),k=1)
iy = spi.splev(x,ipo)
xd = np.linspace(1.0,3.0)
iyd = spi.splev(xd,ipo)
plt.plot(xd,f(xd),'b',label = 'f(xd)')
plt.plot(xd,iyd,'r.',label='interpolation')
plt.legend(loc = 0)
plt.grid(True)
plt.xlabel('xd')
plt.ylabel('f(xd)')
plt.show()
print(np.allclose(f(xd),iyd)) #是否完全拟合
print(np.sum((f(xd)-iyd)**2)/len(xd)) #MES
三次精确插值
ipo = spi.splrep(x,f(x),k=3)
小结
在可应用样条插值的情况下,可以获得比最小二乘回归法更好的近似结果,但数据必须是无噪声的,而且样条插值仅限低纬度问题,计算要求较高,所用时间比回归法长得多。