Springboot中医处方推荐系统b8y10(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。

系统程序文件列表

项目功能:患者,医生,通知公告,症状信息,患者挂号,药方信息

开题报告内容

Spring Boot中医处方推荐系统开题报告

一、研究背景与意义

研究背景

中医作为我国传统医学的瑰宝,拥有数千年的历史和丰富的临床经验。中医处方是中医治疗疾病的核心手段,其配伍遵循君臣佐使的原则,体现了中医整体观念和辨证论治的思想。然而,中医处方的开具高度依赖医师的临床经验和知识储备,不同医师对同一病症的处方可能存在差异,且中医知识传承多以师徒相传或文献记载为主,缺乏系统化的整理和智能化应用。随着信息技术的发展,利用计算机技术辅助中医处方推荐成为可能,有助于提高中医诊疗的规范性和效率。

研究意义

  1. 辅助中医诊疗:通过系统推荐处方,为医师提供参考,尤其对经验不足的医师或基层医疗单位,有助于提高诊疗水平。
  2. 促进中医知识传承:将中医经典处方和临床经验数字化,便于整理、存储和传播,推动中医知识的标准化和现代化。
  3. 提升患者就医体验:通过智能化推荐,缩短患者等待时间,提高诊疗效率,增强患者对中医服务的信任感。
  4. 推动中医与现代科技融合:探索中医与人工智能、大数据等技术的结合,为中医现代化发展提供新思路。

二、研究目的与目标

研究目的

本研究旨在开发一套基于Spring Boot框架的中医处方推荐系统,通过整合中医经典文献、临床案例和专家经验,利用数据挖掘和机器学习技术,实现中医病症与处方的智能化匹配,为医师提供科学、合理的处方推荐。

研究目标

  1. 构建中医知识库:收集、整理中医经典方剂、药材属性、病症信息等数据,建立结构化的中医知识库。
  2. 设计处方推荐算法:结合中医辨证论治原则,设计基于规则和机器学习的处方推荐算法,提高推荐的准确性和个性化程度。
  3. 开发系统功能模块:实现用户管理、病症输入、处方推荐、处方解释、知识查询等功能,满足医师和患者的实际需求。
  4. 优化系统性能:确保系统响应速度快、稳定性高,能够处理大规模数据和高并发请求。
  5. 验证系统有效性:通过临床案例测试和专家评估,验证系统推荐的处方是否符合中医理论和实践要求。

三、研究内容与方法

研究内容

  1. 中医知识库构建
    • 收集中医经典方剂(如《伤寒论》《金匮要略》等)和现代临床案例。
    • 整理药材属性(性味归经、功效主治等)和病症信息(症状、证型等)。
    • 建立结构化的数据库,支持数据的快速查询和更新。
  2. 处方推荐算法设计
    • 基于规则的推荐:根据中医辨证论治原则,设计症状-证型-处方的映射规则。
    • 基于机器学习的推荐:利用历史临床数据,训练模型(如决策树、随机森林、神经网络等),实现处方的智能化推荐。
    • 混合推荐:结合规则和机器学习,提高推荐的准确性和鲁棒性。
  3. 系统功能模块开发
    • 用户管理模块:支持医师和患者的注册、登录和权限管理。
    • 病症输入模块:提供症状选择或自由输入功能,支持多维度病症描述。
    • 处方推荐模块:根据输入的病症,调用推荐算法生成处方列表。
    • 处方解释模块:对推荐的处方进行解释,说明药材配伍原理和适应症。
    • 知识查询模块:支持药材、方剂、病症等知识的查询和浏览。
  4. 系统性能优化
    • 采用缓存技术(如Redis)提高数据访问速度。
    • 使用分布式架构(如Spring Cloud)支持高并发请求。
    • 优化数据库查询和算法执行效率。
  5. 系统验证与评估
    • 通过临床案例测试,验证系统推荐的处方是否符合中医理论。
    • 邀请中医专家对系统进行评估,收集反馈意见并改进。

研究方法

  1. 文献研究法:查阅中医经典文献和现代研究成果,了解中医处方配伍规律和辨证论治原则。
  2. 数据挖掘法:利用数据挖掘技术(如关联规则挖掘、聚类分析等)从临床数据中提取有价值的信息。
  3. 机器学习法:选择合适的机器学习算法,训练模型并优化参数,提高处方推荐的准确性。
  4. 系统开发法:采用Spring Boot框架进行系统开发,遵循软件工程的原则和方法,确保系统的质量和可维护性。
  5. 实验验证法:通过临床案例测试和专家评估,验证系统的有效性和实用性。

四、技术栈与工具选择

后端技术

  1. Spring Boot框架:用于快速搭建系统后端服务,提供RESTful API接口。
  2. MyBatis-Plus:作为ORM框架,简化数据库操作。
  3. Spring Security:用于系统权限控制,确保数据的安全性。
  4. Redis缓存:用于缓存热点数据,提高系统响应速度。
  5. Elasticsearch:用于实现知识的快速搜索和查询。

前端技术

  1. Vue.js框架:构建用户界面,实现数据的动态展示和交互。
  2. Element UI组件库:提供丰富的UI组件,加快前端开发速度。
  3. ECharts图表库:用于数据可视化展示(如药材属性分布、处方推荐结果等)。

数据库技术

  1. MySQL数据库:存储中医知识库的结构化数据(如方剂、药材、病症等)。
  2. MongoDB数据库:存储非结构化数据(如临床案例、专家经验等)。

机器学习与数据挖掘工具

  1. Python:用于数据预处理、模型训练和评估。
  2. Scikit-learn:提供常用的机器学习算法(如决策树、随机森林等)。
  3. TensorFlow/Keras:用于构建和训练深度学习模型(如神经网络)。

开发环境与工具

  1. JDK 1.8:Java开发工具包。
  2. IntelliJ IDEA:集成开发环境。
  3. Maven:项目管理和构建工具。
  4. Git:版本控制工具。
  5. Postman:用于API接口测试。

五、预期成果与创新点

预期成果

  1. 完成系统开发:开发一套功能完善、操作便捷、高效稳定的中医处方推荐系统。
  2. 构建中医知识库:整理和存储大量中医经典方剂、药材属性和病症信息,为系统提供数据支持。
  3. 设计有效的推荐算法:结合中医理论和机器学习技术,实现处方的智能化推荐。
  4. 发表相关论文:在相关学术期刊或会议上发表研究论文,分享研究成果和经验。
  5. 申请软件著作权:为系统申请软件著作权,保护知识产权。

创新点

  1. 中医与现代科技融合:将中医经典理论与机器学习技术相结合,探索中医处方推荐的智能化方法。
  2. 多维度知识整合:整合中医经典文献、临床案例和专家经验,建立全面的中医知识库。
  3. 个性化推荐:根据患者的具体病症和体质特点,提供个性化的处方推荐。
  4. 处方解释功能:对推荐的处方进行详细解释,帮助医师理解处方原理,提高临床接受度。
  5. 开放性与扩展性:系统设计具有良好的开放性和扩展性,支持后续功能的迭代和优化。

进度安排:

第七学期第11-13周:选题论证,收集相关信息。

第七学期第14-15周:毕业设计撰写辅导,选题准备。

第七学期第16周:  教师下任务书。

第七学期第17-18周:准备开题答辩,撰写开题报告。

第八学期第1周:查阅资料,学习相关开发技术,结合需求对系统进行框架设计,制定论文大致框架,实现数据库系统设计。

第八学期第2-5周:实现系统各功能

第八学期第6周:对系统进行单元测试、集成测试。

第八学期第7-9周:完成论文的初稿,进行中期检查。

第八学期第10周:根据中期检查中提出的问题对系统和论文进行修改。

第八学期第11-12周:根据毕业设计继续完善论文的内容,修改论文格式,完成论文查重。完成结题报告,继续修改论文格式。

第八学期第13周:制作答辩PPT,准备答辩。

第八学期第14-15周:进行答辩,填写答辩后修改报告。

参考文献:

[1]刘铃.图书馆书籍管理系统设计与实现[J].电子制作.2022(14)

[2]陈桂香.大数据对我国高校教育管理的影响及对策研究[D].武汉大学,2017

[3]基于数字化校园综合安防管理系统设计[J]. 罗艺.  河北农机. 2020(12)

[4]曾安军.基于Node.js风格的移动端页面可视化构建平台[D].电子科技大学,2018

[5] 妮哈·纳克海德,Kafka权威指南[M].人民邮电出版社,2018

[6]王志任.基于Vue.js的开发平台的设计与实现[D]. 广东工业大学2018

[7]姬忠红, SSM框架应用开发与案例实战[M].人民邮电出版社,2021

[8]基于Vue的Web系统前端性能优化研究与应用[D]. 石冠洲.长安大学.2020

[9]麓山文化,远程办公全攻略[M].人民邮电出版社,2020

[10]周菁,jQuery EasyUI网站开发实战[M].人民邮电出版社,2018

[11]王鹏强.基于vue的MVVM框架的研究与分析[J]. 电脑知识与技术.2019(11)

[12]王苗.基于教辅资料学习系统的Web性能优化[D].华中师范大学.2021

[13]曹帅.基于类型推断的JavaScript引擎模糊测试方法研究[D].西北大学,2020

[14]薛雪.大数据时代数字出版版权保护的策略分析[J].记者摇篮.2021(06)

[15]Tianxiang Yue,Yebing Zou.Online Teaching System of Sports Training Based on Mobile Multimedia Communication Platform[J].International Journal of Mobile Computing and Multimedia Communications (IJMCMC),2019 (1)以上是开题是根据本选题撰写,是项目程序开发之前开题报告内容,后期程序可能存在大改动。最终成品以下面运行环境+技术栈+界面为准,可以酌情参考使用开题的内容。要源码请在文末进行获取!!

系统技术栈:

前端技术栈

Vue.js
Vue 是一套用于构建用户界面的渐进式框架,特别适合与 Spring Boot 集成使用。Vue 的核心库只关注视图层,易于上手且便于与第三方库或既有项目整合。许多开发者选择 Vue 来实现前后端分离的项目,因为其轻量级和响应式的特点

后端技术栈

核心容器:Spring Boot 提供了一个全面的核心容器,用于管理应用程序中的对象和依赖关系

Web:Spring Boot 内置了多个 Web 框架(如 Tomcat、Jetty 或 Undertow),使得创建 Web 应用变得非常简单

数据访问:Spring Boot 支持多种数据库连接池和ORM框架(如 MyBatis、JPA),简化了数据访问层的开发

开发工具

IntelliJ IDEA:这是一款功能强大的 Java IDE,特别适合开发 Spring Boot 项目。它提供了丰富的插件和功能来增强开发体验

Visual Studio Code:这是一个轻量级但功能强大的跨平台 IDE,提供对 Java 和 Spring Boot 开发的良好支持

开发流程:

使用Maven创建一个SpringBoot项目。这可以通过IDE(如IntelliJ IDEA或Eclipse)来完成,选择相应的模板即可

在项目的pom.xml 文件中添加SpringBoot相关的依赖,例如spring-boot-starter-web

设置项目的启动类,通常命名为Application.java 或类似的名称,并使用@SpringBootApplication注解来标注

配置核心的SpringBoot配置文件,如application.properties application.yml ,用于定义数据库连接、缓存策略等

使用者指南

使用 Maven 或 Gradle 创建一个新的工程,并引入 Spring Boot 相关的依赖

src/main/java 目录下创建一个主类,并使用 @SpringBootApplication 注解标注该类。这个注解会启用 Spring Boot 的自动配置功能

主类中通常包含一个 main 方法,用于启动 Spring Boot 应用

  • Spring Boot 提供了丰富的自动配置机制,可以根据项目中的配置文件或外部属性自动配置应用程序。
  • 自动配置原理是通过扫描特定的目录和类路径,寻找符合条件的组件并进行配置

运行应用

  • 通过命令行进入 src/main/java 目录,运行主程序类中的 main 方法即可启动应用。
  • 默认情况下,Spring Boot 应用会使用嵌入式的 Tomcat、Jetty 或 Netty 容器运行

程序界面:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值