最近遇到一个问题,查询数据报错,前端直接不显示数据。用Arthas监控日志,发现是后台查询语句报的错,Caused by: java.sql.SQLexception: Out of memory
why?
后台抓了下sql语句,好家伙,in后面有10000+,怪不得MySQL扛不住,这搁谁能扛住。
既然定位了错误位置,接下来就开始改呗,SQL报的OOM,那咱就一次少查点,给MySQL少点压力,分批查询最后再把结果汇总下就OK。
修改前代码:
public List<AuxiliaryVO> getByIds(List<String> ids) {
// 注意这里的buildInSql中是拼接了in(?,?,?) 这样的条件,这里查询是直接把10000+个ids全丢进去
return pubDAOService.query(AuxiliaryVO.class, buildInSql("id",ids), ids.toArray());
}
修改后代码:
public List<AuxiliaryVO> getByIds(List<String> ids) {
// 分批查询
List<List<String>> partition = Lists.partition(ids, 500);
List<AuxiliaryVO> res = new ArrayList<>();
for(List<String> idsItem : partition){
res.addAll(pubDAOService.query(AuxiliaryVO.class, buildInSql("id",idsItem), idsItem.toArray()));
}
return res;
}
注意,这里分批查询的batch设置的是500,主要是考虑到了eq_range_index_dive_limit这个参数。
当使用in条件查询的时候,MySQL优化器会根据eq_range_index_dive_limit这个参数来确定不同的扫描策略。当in中的元素数量小于该参数的值时,优化器使用index dives(索引下潜)的方式评估符合条件的行数;当大于等于该参数的值时,优化器会使用index statistics(索引统计)的方式评估符合条件的行数。特别的,当这个参数是0的时候,优化器使用index dives方式。
其中,index dives的方式执行策略比较耗时,它会实际读取索引来获取统计信息,但是这种方式比较准确。而index statistics的方式是指,MySQL会定期收集和存储索引的统计信息,优化器在需要的时候直接使用这些存储的统计信息。速度快,但是估计可能不准。当然,评估的行数会最终导致执行计划走不走索引。
我们线上配置的eq_range_index_dive_limit这个参数是600,我们这设置的500是比较合理的。
show variables like 'eq_range_index_dive_limit';
这样就可以解决啦!