DataBuff 多模态AI在可观测平台上的应用实践(龙蜥系统运维联盟Meetup分享)

原文地址:https://databuff.com/resourceDetail/blog100

2025年6月6 日,以 “智算中心智能运维技术” 为主题的龙蜥社区系统运维联盟Meetup在 济南高新禧悦东方酒店 成功举办。围绕智算中心运维技术的前沿趋势与创新实践、AI与运维技术的深度融合,现场来自 阿里云、浪潮信息、山东师范大学、杭州乘云数字 等产学研领域的技术专家为大家带来了精彩的主题演讲,分享了其各自领域的最新技术成果,并与现场40多位开发者进行了深入的技术交流,探索AI与运维深度融合的未来路径。

image.png

(图/现场嘉宾合照)

本次会议,杭州乘云数字技术有限公司联合创始人、产品副总张怀鹏进行了《多模态AI在可观测平台上的应用实践》的案例分享,介绍了乘云公司多模态AI在可观测平台上的应用和实践,强调其带来的主要价值是实现了预测、检测、诊断、建议等关键环节的自动化,大幅提高了故障治理效率。

image

(图/杭州乘云数字技术有限公司联合创始人、产品副总张怀鹏)

在AI引入之前,IT工程师的排障流程基本依靠手工,存在着大量的痛点、难点:

  1. **指标孤岛问题:**​ 系统产生的各类指标(Metrics)往往是相互独立的,缺乏有效的关联性分析,难以形成对系统整体状态的统一认知。

  2. 信息过载及洞察不足**:**​ 用户面对海量的图表、数据仪表盘时,常常陷入“只见树木,不见森林”的困境。平台展示了很多数据,却未能直接提供清晰的分析结论、明确的答案或可执行的指导建议。

  3. **手动排查效率低下:**​ 故障排查或根因分析(Root Cause Analysis, RCA)高度依赖人工操作。工程师需要在指标数据、调用链路(Traces)、日志(Logs)等不同维度的数据之间,以及不同的监控工具之间频繁切换、手动筛选、递归查询,过程繁琐且耗时。

  4. **工具链复杂难用:**​ 构建和维护一套完整的可观测性体系涉及众多工具,这些工具在配置、集成和管理上往往存在困难,增加了使用门槛和运维负担。

image.png

乘云公司引入 ​多模态人工智能(Multimodal AI)​​ 作为解决上述痛点的关键技术路径。

  • 展示多模态AI带来的变革性应用:​​AI驱动诊断​​。当系统发生异常或性能问题时,AI可以自动触发深度分析。它能够​​自动关联​​受影响的上下游服务和组件,通过综合分析多维数据(指标、链路、日志等),快速、准确地​​找出问题的根本原因(Root Cause)​​,显著提升诊断效率和准确性。

  • 构建 ​​“多模态AI在可观测领域的应用方案”​​ 的架构蓝图。该方案强调利用多模态AI技术(如大型语言模型LLM、知识图谱等),对可观测平台中​​异构、多源的数据(文本日志、时序指标、调用链路拓扑、事件等)​​进行深度融合与理解。通过多模态对齐(Alignment)技术,AI能够像人类专家一样,综合解读不同模态数据背后的含义及其关联,实现从被动监控到主动分析、智能诊断、预测性维护的升级。该方案旨在构建一个能自动关联数据、理解上下文、给出分析结论和行动建议的智能化可观测平台。

image.png

杭州乘云提出的实践方案,旨在通过整合​多模态AI​​(特别是LLM和知识图谱),解决传统可观测平台在数据关联性、关键结论提炼、根因诊断效率和工具复杂性方面的核心挑战。其核心价值在于:

  • **自动化关联分析:**​ 打破指标孤岛,自动建立跨服务、跨数据源的关联。

  • **智能化诊断与根因定位:**​ 减少人工递归查找,提供快速、准确的根因分析。

  • **提升数据价值:**​ 将海量、分散的监控数据转化为可理解的分析结果和可执行的建议。

  • **简化运维:**​ 通过AI能力降低工具使用的复杂性和配置集成的难度。

结语

可观测性数据的价值不在于其数量,而在于能否让用户从中快速获取到有效信息。多模态AI技术的应用,正推动可观测性平台从“数据展示”走向“智能分析”,从“被动响应”走向“主动洞察”和“预测预防”。杭州乘云数字技术有限公司的实践表明,拥抱AI驱动的智能可观测,是企业提升运维效能、保障业务稳定运行的必然选择。

您是否也在为海量监控数据无从下手而烦恼?是否期待运维工作变得更加智能高效?欢迎关注我们,探讨多模态AI如何为您的可观测性平台注入智慧动能!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值