自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Datawhale

一个专注于AI领域的开源组织,汇聚了众多顶尖院校和知名企业的优秀学习者,聚集了一群有开源精神和探索精神的团队成员。愿景-for the learner,和学习者一起成长。

  • 博客(2658)
  • 资源 (5)
  • 收藏
  • 关注

原创 Datawhale团队第三期录取名单!

Datawhale团队公示:Datawhale 组织成员Datawhale已经成立一年半了,从一开始的12个人,学习互助,到提议建立开源组织,做更多开源的事情,帮助更多学习者,也促进...

2020-09-23 21:17:58 2636

转载 超全解析!大模型面试宝典60题

为了帮助大家更好地理解本书,也为了方便部分有面试需求的朋友更有针对性地阅读本书,围绕本书各章主题,我系统梳理了大模型领域常见的面试题,其中的大多数问题可以在书中直接找到答案,部分进阶问题可以从本书的参考文献或网络上的最新论文中找到答案。模型的注意力机制是全局的,每个 token 都会与序列中其他 token 进行交互,其计算复杂度是 O(n^2),这在显存或内存上有较高开销,因此在训练阶段我们就需要设定一个最大的上下文长度,比如 2048 或 4096 个 token。(提示:TinyZero)

2025-07-13 22:32:28 4

转载 硅谷最贵华人诞生!上交校友庞若鸣薪酬破2亿美元,远超苹果CEO库克

在苹果期间,他的主要工作涉及了大模型全流程开发,包括预训练架构设计、后训练调优及推理效能提升,以及多模态能力构建,即开发同时理解与生成文本、图像等多模态内容的核心技术。不过,如上所述,这些天价薪酬并非「白送」,大部分资金与绩效目标挂钩,他们需在Meta任职一定期限才能逐步解锁全额报酬。与此同时,他谦逊而乐于助人,我相信他已帮助过谷歌大脑、语音、广告等众多团队的同事(或许还有许多我所不知的领域)。2017年之后,他又转战「大脑应用研究」,领导了Google Brain团队的语音识别研究与产品落地。

2025-07-12 22:15:36 13

原创 英伟达大牛主讲!斯坦福吴恩达:大语言模型的后训练课程全网发布

而在后训练阶段,模型则着重学习实际应用中的关键能力,包括准确理解并执行指令、熟练运用工具,以及进行复杂的逻辑推理。而在本课程中,就可以学习到三种常见的后训练方法——监督微调(SFT)、直接偏好优化(DPO)和在线强化学习(Online RL)——以及如何有效使用它们。了解在什么情况下应使用后训练方法,包括监督微调(SFT)、直接偏好优化(DPO)和在线强化学习(RL),并深入分析其应用背景和优势。无论是想打造一个更安全的 AI 助手、调整模型的语言风格,还是提升特定任务的精确度,后训练都不可或缺。

2025-07-10 22:02:13 595

原创 新增学习内容:大模型应用开发!

AI夏令营是Datawhale在暑期发起的大规模AI学习活动,汇聚产学研资源和开源社区力量,为学习者提供项目实践和学习机会,提升专业能力和就业竞争力。合作企业包括:科大讯飞、蚂蚁集团、魔搭社区、阿里云天池、英特尔、浪潮信息、上海科学智能研究院等。2025第一期,根据学习者的需求反馈,新增大模。Datawhale AI夏令营 x 科大讯飞。更新:Datawhale AI夏令营。Datawhale发布。

2025-07-08 22:01:34 123

原创 去年暑期近3万人参与的AI夏令营,正式启航!

正式结缘于24年8月份夏令营~当时有幸赶上大模型应用开发比赛,我这时还是大模型小白,但是我有一个idea,并且发现能用大模型技术实现,本着合理利用资源学习的目的我参加了夏令营。AI夏令营是Datawhale在暑期发起的大规模AI学习活动,汇聚产学研资源和开源社区力量,为学习者提供项目实践和学习机会,提升专业能力和就业竞争力。,有问题请教是会有素未蒙面的助教耐心解答的,志同道合的小伙伴是随处可见的,,当时也正在准备找实习,正好也想借这次机会做一个项目,丰富丰富简历。,我结识了CAMEL-AI团队的多位伙伴。

2025-07-06 22:14:41 441

转载 Meta新AI团队成员曝光:8人来自Open AI,清北、浙大校友占半壁江山

在此之前,毕树超还在谷歌任职 6 年,主要研究多阶段深度学习模型,优化谷歌广告业务,给谷歌带来了超过上亿美元的增量收入。他还领导了一支后训练团队。我认为他是同辈创业者中最杰出的一位,他对超级智能的历史性意义有着清晰的认识,并且作为联合创始人兼 CEO,他将 ScaleAI 打造成了一家高速发展的公司,几乎参与了行业内所有领先模型的开发工作。在 OpenAI 期间,他是 o3/o4-mini/GPT-4.1/GPT-4o 共同创建者,曾任 OpenAI 感知团队负责人,Gemini 多模态系统联合主管。

2025-07-05 23:02:53 64

原创 百万奖金,科大讯飞AI大赛来了!

高校赛是面向全球高校大学生开发者,聚焦一个或多个实际场景,以创新落地应用产品或解决方案为结果导向的开放式竞赛,激活大学生创业创新梦想。7年前,科大讯飞作为人工智能国家队的成员,正式启动“科大讯飞 AI 开发者大赛”。在延续72道数据算法赛、36道创新应用赛的基础上,开设2道高校创新赛。,已经成为国内规模最大、举办时间最长的人工智能赛事之一。36道应用赛,加速AI规模化应用,构建产学研用生态闭环。72道算法赛,深耕数据算法前沿,推动核心技术自主创新。本届大赛赛题全面升级,涵盖算法赛、应用赛、高校赛等。

2025-07-04 19:46:19 434

转载 南大周志华团队新作!

本评估还在附录 E 中给出了模型在强化学习前后的响应示例,从中可以看出,对于同一个问题,在基于内源性奖励进行优化之前,模型无法解决问题,并且随着响应的进行开始胡言乱语,甚至输出 Python 代码。这篇论文提出了解决 LLM 的对齐问题,通过利用模型内部的奖励机制,而不是依赖外部的人类反馈,这可能会改变未来 LLMs 的开发和应用方式。表 1 中的结果显示,EndoRM 不仅显著优于所有使用相同基础模型的无需训练基线方法,还以更高的平均得分超越了最先进的显式训练奖励模型。更高的准确率意味着奖励质量更优。

2025-07-04 18:23:56 42

转载 AI大模型应用架构图大全

AI应用架构,来源:AI架构师圈子。AI应用架构,来源:AI架构师圈子。AI大模型物联网AloT架构图。AI大模型Agent平台架构图。Datawhale干货。Datawhale干货。AI大模型通用技术架构图。AI大模型通用技术架构图。AI大模型通用技术架构图。AI农业大模型技术架构图。AI导购大模型技术架构图。AI大模型合规管理架构图。AI大模型+CRM架构图。AI大模型技术全景视图。RAG知识库业务架构图。AI导购大模型架构图。

2025-07-03 22:12:01 41

转载 一篇95页最新80种Deep Research系统全面综述!

通过多个专门的智能体协作完成研究任务,每个智能体负责特定的角色和任务。现代系统通过明确的协调机制和信息共享协议,实现了多智能体协作,显著提升了处理复杂任务的能力。例如,smolagents/open_deep_research框架通过模块化智能体架构和明确的协调机制,实现了有效的多智能体协作。:现代深度研究系统通过明确的推理框架(如链式推理、树状推理和基于图的推理架构)显著提升了推理能力。例如,OpenAI的o3模型通过自我批评、不确定性估计和递归推理改进等技术,增强了对复杂研究任务的处理能力。

2025-07-02 18:21:38 92

转载 跟着台大李宏毅老师学:别让推理模型想太多

把问题输入给语言模型多次,把答对的情况收集起来,看看模型答对平均需要多少的长度,比平均长度长就是不好的,比平均长度短就是好的。数学问题上训练,在in-domain的测试集测试,模型输出的长度和prompt中指定的长度的差异在2%-6%区间内,但是在out-of-domain的测试集上控制长度的效果没那么好,但也是有一定控制力度的。有很多实验针对这个问题做了研究,把大量问题输入给模型,得到推理过程和答案,接着把这些推理的长度和答案的正确率分别作为横轴、纵轴画出它们的关系图,发现两者是负相关的。

2025-07-01 23:02:27 29

转载 新鲜出炉!斯坦福2025 CS336课程全公开:从零开始搓大模型

另一位讲师 Percy Liang 是斯坦福大学计算机科学系副教授,同时也是基础模型研究中心(CRFM)主任,同时也有参与以人类为中心的人工智能(HAI)、人工智能实验室、自然语言处理研究组和机器学习研究组等的研究工作。CS336 课程的目标是「引导学生完成开发自己的语言模型的整个过程,从而帮助他们全面理解语言模型。」该课程借鉴了操作系统课程中从零开始创建完整操作系统的教学方法,引导学生完成语言模型创建的各个环节,包括预训练的数据收集和清理、Transformer 模型的构建、模型训练以及部署前的评估。

2025-06-30 22:03:27 53

原创 本地模型接入本地MCP实践!保姆教程来了

可以看到模型调用了mcp的weather工具,并返回了工具调用的结果 {"temp":25,"condition":"晴"} 说明模型准确的识别到了工具,并进行了调用。mcp最近很火,但在实际的应用环境中,并没有详细的资料讲解如何使用如何部署,增加初学者的学习成本,本文希望直观的展示mcp工具的具体使用实践。在实际的应用场景中,我们肯定会开发各种不同的工具,那每次使用。MCP Server(服务器):独立运行的轻量程序,通过标准化的协议,为客户端提供上下文、工具和提示,是MCP服务的核心。

2025-06-29 22:41:04 1339

原创 阿里最新Qwen VLo,多角度测评来了

看到ChatGPT生成的结果,笔者感慨万千,硬要鸡蛋里挑骨头——苏打水体积是小于薯片罐的,但这需要常识或者根据互联网资料,仅从图片中也无法推理得到。生成照片,图中男人带着黑帽子在地铁上看报纸,旁边是一个美丽的带红色墨镜年轻女性,还有一只=哈士奇,地铁的窗外是自由女神像,地铁的站牌显示“Qwen VLo”ChatGPT 4o在预测边缘检测图时,实际调用了Python代码,甚至还很贴心地给出了文字说明:可以更换不同的边缘检测方法。:严格对应提示词的所有元素(人物、动作、服饰、动物、地铁场景等),无明显缺漏。

2025-06-29 18:16:10 948

转载 Gartner 发布2025年中国人工智能十大趋势

模型、将模型与自身专有的业务知识相结合以及根据特定企业场景对模型进行定制,还能够将解决方案与企业特有的运营环境深度融合,例如与现有系统集成。越来越多的企业意识到,真正的竞争优势并不在于模型本身,而在于那些他人难以获取或复制的。随着用户期望的不断提升以及对本地需求的深入了解,中国企业开发出了使用简便的。技术的普及使小型企业和初创公司能够在更加公平的竞争环境中发展,符合中国兼顾包容性和平衡发展的总体经济目标。格局的持续演变,中国所取得的进步让我们能够深入了解能够塑造未来市场的新兴技术和能力。

2025-06-29 10:42:45 60

转载 刚刚,英伟达任命新首席研究科学家!95后,本科来自清华

他最近的研究重点是生成式AI与基础模型,涵盖了从数据策管、预训练、有监督微调、指令微调、基于人类反馈的强化学习(RLHF)、模型推理,到构建防御「越狱」和「提示词注入」攻击的安全护栏等全链条技术。此外,他也对统计机器学习、优化、机器学习系统的隐私与安全、强化学习、机器学习的经济学视角,及其在自然语言处理、代码生成、计算机视觉、自动驾驶和机器人等领域的应用有广泛兴趣。Arena-Hard-Auto:一种自动化的基准创建流水线,采用「大语言模型即裁判」(LLM-as-a-judge)的模式来快速评估模型性能。

2025-06-28 22:09:38 22

原创 一文读懂向量数据库,原理到应用全解析!

随着大语言模型等技术的发展,训练时使用的数据已经无法满足一些应用场景的需求(模型的数据只能停留在某个时候,比如Claude提示词就明确显式表示了时效性),这一部分知识就需要通过工具或者记忆模块,并且以提示词的形式告诉大语言模型。不同度量在不同数据库中的支持程度不一,如有的引擎只支持欧氏和余弦,有的还支持更复杂度量。早期的语言表示方法是符号化的离散表示(如独热编码、ti-idf词袋模型),但这些词之间没有距离的概念,比如“计算机”和“电脑”被认为是两个完全不同的词,继而引入了人工知识库,如同义词词典。

2025-06-27 23:30:52 642

转载 上海交大3A校友会,前沿研究分享!关于智能体,Datawhale联合直播

也涌现了一大批在人工智能领域独角兽公司的创始人,例如依图科技创始人林晨曦,第四范式创始人。中国最大的AI开源学习社区,以「for the learner,和学习者一起成长」为使命,覆盖全球 3000+高校,1000+企业,帮助了超过100万AI开发者学习成长。本期论坛的主题为:从个体到协同:高效强化学习与部分可观察多智能体决策,主持人为吉林大学副教授龙婷,邀请到的两位讲者分别是龙婷课题组的博士生单怡翔和梁启凡。任,同时提升3A校友在学术上的国际影响力,为全球计算机科技的可持续发展贡献3A校友的智慧。

2025-06-26 23:46:48 29

转载 CV大牛何恺明正式官宣入职谷歌!

2021 年 11 月,何恺明以一作身份发表论文《Masked Autoencoders Are Scalable Vision Learners》,提出了一种泛化性能良好的计算机视觉识别模型,同样是刚刚发表就成为了计算机视觉圈的热门话题。一个初入 AI 领域的新人,在探索的过程中看到很多重要研究主要作者都是何恺明,经常会不由得感到惊讶。我们也经常赞叹于何恺明工作的风格:即使是具有开创性的论文,其内容经常也是简明易读的,他会使用最直观的方式解释自己「简单」的想法,不使用 trick,也没有不必要的证明。

2025-06-26 11:44:22 26

原创 AI编程工具Comate AI IDE,最全测评来了!

Comate AI IDE 的发布标志着编程工作方式迎来革命性转变,它在“智能”、“拓展”、“协同”、“灵感”四大方面实现全方位链接,具备多项核心能力:AI 辅助编码全流程、多智能体协同、多模态能力增强、首创设计稿一键转代码、支持 MCP 工具接入、开箱即用等等,堪称是 AI 时代工程师的‘工作台’。如果说 Zulu 展示了 AI 智能体在逻辑和代码上的智能,那么 Comate AI IDE 的另一大惊喜,则在于它对多模态内容的支持,使开发者能够跨越文本代码之外的边界,探索多模态设计的更多可能性。

2025-06-25 22:59:43 925

原创 AI自动化神器n8n,保姆级教程来了!

的简称,是一个开源的、高度可扩展的工作流自动化工具。它允许你通过一个直观的可视化界面,将不同的应用、服务和数据连接起来,创建复杂的自动化流程,从而提升效率、减少重复性工作。而其强大的节点系统和灵活的编程能力, 使得它不仅能满足日常的简单自动化需求,更能应对复杂的企业级工作流挑战,真正成为“自动化超级英雄”。在接触到 n8n 之后,我萌生一个想法,利用 n8n 自动化进行 GitHub Trending 项目的追踪, 并生成邮件通知,甚至自动化发布到我的博客站点中。在示例中,我们使用 Python 节点。

2025-06-24 22:29:59 1220

转载 万字长文深入浅出教你优雅开发复杂AI Agent

作者:walli 最近,大家都在讨论MCP(Model Context Protocol),它通过标准化协议,实现了工具和AI应用的解耦,推动了AI Agent应用研发范式的转变。尽管MCP非常有价值,但它并非万能。一个"聪明的"AI Agent不仅仅依赖于MCP。MCP主要解决了工具调用、Prompt模板、资源访问等标准化问题,但对于AI Agent的工具选择、任务规划、多Agent协同等核心挑战,仍存在局限,并在实际复杂应用场景中暴露出一些不足。本文将更全面地介绍AI Agent的生态,结合实践和技术原

2025-06-24 17:08:36 217

原创 Dify MCP 保姆级教程来了!

各种软件和工具的 MCP 接口,比如: 百度地图、高德地图、游戏开发软件 Unity、三维建模软件 Blender、浏览器爬虫软件 Playwrights、聊天软件 Slack。而一旦大语言模型能操作工具,例如:联网/地图/查天气/函数/插件/API 接口/代码解释器/机械臂/灵巧手,它就升级成为智能体 Agent,能更好地帮助人类。每个支持 MCP 的软件,都有一个 MCP Server 文件,里面列出了所有支持调用的函数,函数注释里的内容是给 AI 看的,告诉 AI 这个函数是做什么用的。

2025-06-23 22:51:57 1288

转载 马斯克Robotaxi今日上路,画饼十年终兑现!团队合影C位武汉理工校友引关注

他在2019年7月加入特斯拉,从事机器学习研究——时间上看,正是在特斯拉自动驾驶日之后,当时,马斯克画了个大饼:要在2020年部署100万辆Robotaxi(doge)。此前,华尔街研报曾指出,特斯拉Robotaxi的纯视觉方案,对比Waymo会更加便宜,具体地说,Waymo的整车成本是特斯拉Robotaxi的七倍。根据《埃隆·马斯克传》的说法,当时,段鹏飞“连轴转了几个月,没有休息一天,实在太累了,感觉被榨干了”,于是,在自动驾驶日之后,段鹏飞离开了特斯拉。还有,特斯拉的人也太“卷”了。

2025-06-23 17:31:54 51

转载 Sam Altman提醒创业者:ChatGPT将来要做的,大家就绕开吧

答: 我们希望成为一个平台。最终的愿景是一个完全多模态的集成模型,能深度推理、实时生成视频、即时编写代码,让计算机界面近乎「消失」,变得无感。因为技术极大地降低了人与人之间的协调成本,我们将看到由极少数人创造出的、在质量和数量上都极其惊人的产品与成果。重要的是梦想可以变得宏大,但行动上要选择一个潜力巨大的市场,然后一步一个脚印地前进,而不是一开始就追求规模。坚持做你相信的事非常困难,尤其会面对你尊敬的人的否定。创业的好处和坏处都远超你的想象,你必须学会如何在这种极端的压力下坚持下去,不断跌倒,不断爬起来。

2025-06-22 18:52:00 49

转载 AI Infra和传统Infra断代了吗?我不这么看

在 AI Infra 中,sharding 变成了对模型参数,KV Cache,activation,gradients,以及optimizer states的split,比如tensor parallelism和KV paging等,是实现分布式推理和训练的前提。很多熟悉网络,计算,存储等传统infra的工程师,会觉得自己原来的经验在 AI 场景里难以直接利用,尤其是看到 GPU,KV Cache,3D parallelism 这些新概念时,容易产生一种感觉完全换了一套体系的落差感。

2025-06-22 15:38:51 49

转载 菲尔兹奖得主陶哲轩,首次3小时非学术机构访谈来了!

Datawhale干货 访谈:陶哲轩,编译:量子位陶哲轩罕见接受了一次长长长长访谈,把他关于数学、AI、教育和人类智慧的最新认知,都对外分享了。作为菲尔兹奖得主,陶哲轩一直被认为是当世最伟大的数学家之一,而这次在与MIT技术背景的播客大神Lex Fridman的对话,也是他近年来首次接受超3小时的非学术机构访谈,内容覆盖数学前沿、AI形式化验证、科研方法论等多个硬核议题。不仅谈论分享了数学和物理相关的专业性观点,还结合当下AI技术迅速发展的背景,作出了很多像基础教育和AI应用的大众话题思考……陶哲轩金句频出

2025-06-21 23:02:18 129

转载 通俗易懂的总结:对RL for LLM本质的理解

通过这一循环,只要权重(以及背后的reward)设计得当,模型便有潜力实现持续的自我迭代与能力攀升,最终达到超越人类的性能水平。例如,ReST[4]方法中的0-1过滤、PPO[5]中学习的价值函数(value function),以及DeepSeek GRPO[6]中从批次数据中估计的优势函数(advantage function),都是对该问题的不同解法。”:RL的核心是奖励信号(reward),它不要求监督者提供完美的“专家答案”,而只需对模型生成的答案进行有效性或质量的“验证”。

2025-06-21 15:30:33 28

转载 ChatGPT用多了会变傻!MIT招募大学生做实验论证,用得越多人越笨

上,LLM组的论文结构更紧密规范,但内容同质化高,纯大脑组则体现出更独特的论文风格,反映了个人经验的参与,使用谷歌搜索时更容易受搜索排名的偏见影响,质量保持中等水平。实验发现,原本使用LLM的参与者在不使用工具的情况下,大脑神经连接仍然弱于原大脑组,且引用能力较差,显示出对工具的依赖,在一定程度上会造成。而原本依靠自己完成的参与者在第四轮使用LLM时,大脑活动反而增强,表现出更高的记忆召回能力,并重新激活了大脑神经网络中的核心节点。他们认为,AI再智能,也只是工具,保持平衡才是用好AI的关键。

2025-06-20 22:01:30 44

转载 重磅:2026QS世界大学排名发布!

本次排名共收录了来自106个国家和地区的1500多所大学,麻省理工学院连续第14年位居榜首,全球高校竞争趋势日益激烈。全球高等教育分析机构QS Quacquarelli Symonds(QS)于今日正式发布了2026QS世界大学排名。中国内地高校进入本次QS世界大学排名,在世界前100的中国内地高校中。,这一表现延续了近年来中国高校在国际排名中不断攀升的总体趋势。目前,在中国(内地)高校中,中国(内地)高校排名较去年有所上升。所高校上榜,排名最高的是。所高校上榜,排名最高的是。所高校上榜,排名最高的是。

2025-06-19 22:01:31 128

转载 刚刚!Sam Altman官宣GPT-5今夏登场:超级智能更为重要

在OpenAI首次推出的官方播客节目中,Sam Altman与主持人Andrew Mayne(OpenAI前员工)进行了一场深度对话,奥特曼透露了万众期待的GPT-5的大致发布时间,还深入探讨了AGI(通用人工智能)的定义、价值5000亿美元的“星际之门”(Project Stargate)算力项目、与Jony Ive合作的AI硬件、用户隐私原则以及AI如何重塑科研与日常生活。他认为,用户对ChatGPT抱有高度信任,如果为了广告收入而修改LLM的回答内容,将是“摧毁信任的时刻”,他对此深恶痛绝。

2025-06-19 16:05:23 62

原创 提供免费4090!一杯奶茶钱灵活使用主流GPU算力

依托“多元异构、软硬协同”的核心技术优势,打造了连接“M种模型”和“N种芯片”的“MxN”AI基础设施新范式,实现多种大模型算法在多元芯片上的高效协同部署。中国最大的AI开源学习社区,以「for the learner,和学习者一起成长」为使命,覆盖全球 3000+高校,1000+企业,帮助了超过100万AI开发者学习成长。自发的开源项目体验、突发的小型训练任务、临时的模型验证工作,以及深夜赶进度的课题实验,很多时候对算力的性能、稳定性都有要求,但。,用多少算多少,训练10小时=一杯奶茶钱。

2025-06-18 22:00:38 178

原创 Datawhale正式启动AI案例招募,让每个案例背后的人被看见!

那么,在你的工作或生活中,AI 真的带来了哪些切实的改变?你的优秀案例将有机会在 Datawhale 公众号、社区、活动上展示,触达数上百万的 AI 开发者。让我们一起探索 AI 的无限可能,共同见证 AI 带来的实际价值!:案例必须是真实存在的、正在运行或已验证的 AI 应用,而非停留在理论或概念阶段。:案例能够体现 AI 在特定场景下的实际作用,具有可借鉴性或启发性。你的案例将成为宝贵的实践范例,启发更多人思考 AI 的实际应用与价值。:AI 在医疗、金融、教育、零售等垂直领域的创新应用。

2025-06-18 21:08:02 243

原创 最新豆包大模型发布!火山引擎推出Agent开发新范式

这背后需要具备强推理、多模态、低成本的强大模型,从而支撑起更复杂的 Agent,而 Agent 开发新范式也构建起了覆盖大模型开发全链路的工具矩阵,为开发者和企业提供从 Prompt 优化到 Agent 落地的一站式方案。面对这一变化,我们需要做的,正是理解并拥抱这种新范式,让自己的想象力在 AI 原生的沃土中开花结果。在这个 Agentic AI 元年,AI 云原生的新风已起,我们不妨大胆畅想:当 AI 不再是冰冷的指令执行,而成为有自主智能的数字劳动力,我们的软件世界将迎来何等蓬勃的生命力?

2025-06-17 22:58:27 1010

转载 Muon作者仅用一篇博客,就被OpenAI看中了

关于在发论文和「速通技术」之间,Keller Jordan的看法依然和半年前一样,今日他转发了一则2月份的自己的推文,表示虽然Muon火了,也帮他进入了OpenAI,Keller Jordan的意思很明显,相比于arXiv上的一篇大概率被「淹没」的论文,还不如老老实实的继续研究自己的「优化器」。人工智能发展速度飞快,模型训练始终是其核心环节,而优化器则扮演着至关重要的角色,它负责调整模型的参数,让模型在数据上表现得更好。但不幸的是,在学术界,激励机制有些错位。随后,又在维也纳复杂性科学中心担任访问研究员。

2025-06-17 20:05:00 28

转载 12万奖金,面向大模型的数据挑战赛来了!

本届赛事设置三大赛道:医疗大模型的隐私微调、密态大模型推理的隐私保护、以及基于全同态加密的最近邻选取(KNN),我们期待与社会各界共同探索数据要素领域的创新方向、应用场景与前沿技术,推动数据价值的安全释放与创新实践!为积极响应国家数据要素战略,加速相关领域数据的开发利用,2024年,蚂蚁密算与浙江大学网络空间安全学院携手举办了首届“隐语杯”大赛,并被国家数据局认定为首批获得“数据要素×”大赛全国总决赛推荐资格的第三方赛事。报名时间:2025年6月9日-2025年6月29日。密态大模型推理的隐私保护。

2025-06-16 22:26:48 47

转载 报名开启 | 6月21日 Google活动来杭州了

汇聚了全球顶尖的开发者与技术爱好者,共同探讨最新的技术趋势、产品发布以及开发者工具。这场盛会不仅展示了 AI、云计算、移动开发等领域的前沿技术,还为开发者们提供了宝贵的学习与交流机会。无论你是开发者、产品,还是对技术充满好奇的爱好者,这场活动都将为你带来全新的视角与收获!让我们一起在技术的海洋中遨游,感受社区的温暖与活力。停车:北门入口进,左拐可停地面车位,右拐可停地下车库,2元一小时。为了延续 I/O 的热度,GDG 杭州将于。:带你深入了解 I/O 的技术亮点。:与志同道合的技术爱好者面对面交流。

2025-06-16 14:28:22 49

转载 最新12种GraphRAG技术全面评测

不同的 GraphRAG 实现生成的索引图在结构上存在显著差异,例如 HippoRAG2 生成的图更为密集,节点和边的数量远超其他框架。:GraphRAG 在复杂推理、上下文总结和创造性生成任务中表现优于 RAG,但在简单事实检索任务中,RAG 的表现更好或相当。:在复杂推理和多跳任务中,GraphRAG 显著优于传统 RAG 方法,尤其是在需要深度上下文理解和逻辑推理的任务中。:GraphRAG 方法不仅提高了生成的准确性,还显著提升了模型的推理能力,使其能够生成更符合逻辑的解释。

2025-06-16 12:33:54 72

转载 影响全球程序员,黄仁勋:编程语言的未来是「Human」

AI的新问题是「自信地胡说八道」:它能生成看似真实的学术文章,但作者和期刊全是假的;没有操作系统、没有C语言、没有Java、没有Python、无需再学习算法和数据结构,只要你会说「Human」语言。每一个成功的界面——从编程语言、UI设计到API接口,最终都发展出了正式结构。人类语言灵活,效率高,哪怕说「拿那个东西」,别人也能理解上下文。未来你最应该学会的是如何用Human语言来和AI沟通——不论是中文、英语、法语、德语还是孟加拉语。我们有70年建立正式系统的经验,理解其中的规律,知道该往哪走。

2025-06-15 23:19:47 28

Airbnb 新用户的民宿预定预测-数据集

Airbnb 新用户的民宿预定预测 kaggle比赛完整数据集 主要包含5个csv文件

2018-06-20

Python数据分析与挖掘实战(高清带标签+源代码)

10余位数据挖掘领域资深专家和科研人员,10余年大数据挖掘咨询与实施经验结晶。从数据挖掘的应用出发,以电力、航空、医疗、互联网、生产制造以及公共服务等行业真实案例为主线,深入浅出介绍Python数据挖掘建模过程,实践性极强。 本书共15章,分两个部分:基础篇、实战篇。基础篇介绍了数据挖掘的基本原理,实战篇介绍了一个个真实案例,通过对案例深入浅出的剖析,使读者在不知不觉中通过案例实践获得数据挖掘项目经验,同时快速领悟看似难懂的数据挖掘理论。读者在阅读过程中,应充分利用随书配套的案例建模数据,借助相关的数据挖掘建模工具,通过上机实验,以快速理解相关知识与理论。 基础篇(第1~5章),第1章的主要内容是数据挖掘概述;第2章对本书所用到的数据挖掘建模工具Python语言进行了简明扼要的说明;第3章、第4章、第5章对数据挖掘的建模过程,包括数据探索、数据预处理及挖掘建模的常用算法与原理进行了介绍。 实战篇(第6~15章),重点对数据挖掘技术在电力、航空、医疗、互联网、生产制造以及公共服务等行业的应用进行了分析。在案例结构组织上,本书是按照先介绍案例背景与挖掘目标,再阐述分析方法与过程,最后完成模型构建的顺序进行的,在建模过程的关键环节,穿插程序实现代码。最后通过上机实践,加深读者对数据挖掘技术在案例应用中的理解。

2018-06-20

机器学习_数学基础_精选教材(概率,线代,微积分)

普林斯顿微积分读本高清中文版 概率论与数理统计 - 陈希孺 MIT线性代数导论_Introduction to Linear Algebra, 4th 每一本都是经典之作,和国内同济版相比,通俗易懂,易于自学。 奠定机器学习数学基础,三本教材就够了!!!

2018-08-09

用Python解决数据结构与算法问题

一本关于python版本极佳的数据结构和算法相关教材 而掌握算法和数据结构是拿到好offer必备的核心技能!

2018-08-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除