VLLM实现大模型服务的部署

安装

# (Recommended) Create a new conda environment.
conda create -n myenv python=3.9 -y
conda activate myenv

# Install vLLM with CUDA 12.1.
pip install vllm -i https://pypi.tuna.tsinghua.edu.cn/simple/

离线推理

from vllm import LLM, SamplingParams

llm = LLM(model="meta-llama/Meta-Llama-3-8B-Instruct")  # 你的模型路径
sampling_params = SamplingParams(temperature=0.5)  # 生成文本的控制参数,temperature越大,生成的内容越随机

# 处理输出
def print_outputs(outputs):
    for output in outputs:
        prompt = output.prompt
        generated_text = output.outputs[0].text
        print(f"Prompt: {
     
     prompt!r}, Generated text: {
     
     generated_text!r}")
    print("-"
### 使用 Python 部署 vLLM 大模型的示例教程 vLLM 是一个用于高效部署大模型的开源框架,支持多种大语言模型(LLM)的推理和生成任务。以下是一个完整的 Python 示例,展示如何使用 vLLM 部署 Qwen-7B-Chat 模型并进行推理[^1]。 #### 1. 安装依赖 首先需要安装 vLLM 及其相关依赖。推荐使用 Conda 环境以确保兼容性[^3]。 ```bash # 创建并激活一个新的 Conda 环境 conda create -n myenv python=3.9 -y conda activate myenv # 安装 vLLM 并指定 CUDA 版本 pip install vllm ``` #### 2. 启动 vLLM 服务 在终端中运行以下命令以启动 vLLM 服务,并加载 Qwen-7B-Chat 模型。 ```bash vllm serve Qwen/Qwen-7B-Chat --trust-remote-code ``` #### 3. 使用 Python 进行推理 启动服务后,可以通过 Python 脚本调用 vLLM 提供的 API 接口进行推理。以下是一个完整的代码示例: ```python import requests def query_vllm(prompt, max_tokens=100, temperature=0.7): """ 向 vLLM 服务发送请求并获取模型生成的结果。 :param prompt: 输入的提示文本 :param max_tokens: 最大生成 token 数量 :param temperature: 温度参数,控制生成的随机性 :return: 模型生成的文本 """ url = "http://localhost:8000/generate" # 默认 vLLM 服务地址 headers = {"Content-Type": "application/json"} data = { "prompt": prompt, "max_tokens": max_tokens, "temperature": temperature, } response = requests.post(url, headers=headers, json=data) if response.status_code == 200: result = response.json() return result["text"] else: return f"Error: {response.status_code}" # 示例:向模型发送提示并获取生成结果 if __name__ == "__main__": prompt = "请解释什么是大模型?" generated_text = query_vllm(prompt, max_tokens=200, temperature=0.5) print("模型生成结果:") print(generated_text) ``` #### 4. 参数说明 - `prompt`: 提供给模型的输入文本。 - `max_tokens`: 模型生成的最大 token 数量。 - `temperature`: 控制生成文本的多样性。值越低,生成结果越确定;值越高,生成结果越随机[^2]。 #### 5. 注意事项 - 确保 vLLM 服务已正确启动,并监听默认端口 `8000`。 - 如果模型较大,可能需要更高的 GPU 内存或分布式部署支持。 - 对于生产环境,建议对 API 请求进行负载均衡和安全性加固。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

疯狂的小强呀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值