二进制和十进制怎么互转

本文介绍了二进制的基本概念及其与十进制之间的转换方法。详细讲解了如何将二进制数字转换为十进制数字,并通过实例演示了如何使用短除法将十进制数字转换为二进制数字。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二进制的基本概念

在学习二进制怎么转十进制之前,我们要先认识一下二进制。(如果你已经学会了,可以跳过)


二进制是一种计算机可识别的源码,由数字1和0组成。每个数字都占据计算机内存里的1 b(bit),每8 bit为一个字节(Byte,简写为B)。

粽索粥汁,十进制每位满10进一,而二进制则是满2进一,例如:二进制 0101 加上 0001,应该是 0102,但由于满了2,所以要向前进一,那么就是 0110。


二进制转十进制

言归正传,二进制想要转十进制,我们得知道二进制每一位表达十进制的多少。

这里,我们用举十进制的例子来求共式。

首先,十进制的 618=8×1+1×10+6×100618=8\times 1 + 1 \times 10 + 6 \times 100618=8×1+1×10+6×100,但这证明了什么呢?

其实不难发现,我们从最低位(也就是个位)开始,乘数为1,每高了一位就乘十,总结一下就是:8×100+1×101+6×1028 \times 10^0 + 1 \times 10^1 + 6 \times 10^28×100+1×101+6×102

发现了吗?每个十进制都符合:nnn 的个位 ×10k−(k−1)+n\times 10^{k-(k-1)} + n×10k(k1)+n 的十位 ×10k−(k−2)+…\times 10^{k-(k-2)} + …×10k(k2)+ …+n… + n+n 的最高位 ×10k−1\times 10^{k-1}×10k1。(kkknnn 的位数)

我们把这个公式进化一下,让它通用于任何进制,就变成了:a[k−1]×mk−(k−1)+a[k−2]×mk−(k−2)+…a[k-1] \times m^{k-(k-1)} + a[k-2] \times m^{k-(k-2)} + …a[k1]×mk(k1)+a[k2]×mk(k2)+ …+a[1]×mk−1… +a[1] \times m^{k-1}+a[1]×mk1。(其中 a[i]a[i]a[i] 表示 nnn 的第 iii 位,kkknnn 的位数,mmmnnn 的进制)

我们只要把 m=2m = 2m=2 带入公式就行了。


十进制转二进制

十进制转二进制我们一般用短除法,就是分解质因数和求最大公因数还有最小公倍数的那个。

首先,我们把想要换算的十进制除以2,我们会得到一个商和余数。把商写在短除号下面,余数写在被除数右边,用三个点分开,直到被除数小于除数为止。(如下图)
短除法求二进制
然后把余数从下往上写下来,就是:10011,这就是19的二进制了。

我们还可以用刚才的方法验证一下(这里乘数为零的省略):1×20+1×21+1×24=1+2+16=191 \times 2^0 + 1 \times 2^1 + 1 \times 2^4 = 1 + 2 + 16 = 191×20+1×21+1×24=1+2+16=19


总结

二进制并不是很难,主要靠理解它的基本概念和性质。

结束

整篇文章到这里就结束了,如果你觉得文章写得好的话,别忘了点个赞哦!Bye~~~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值