二进制的基本概念
在学习二进制怎么转十进制之前,我们要先认识一下二进制。(如果你已经学会了,可以跳过)
二进制是一种计算机可识别的源码,由数字1和0组成。每个数字都占据计算机内存里的1 b(bit),每8 bit为一个字节(Byte,简写为B)。
粽索粥汁,十进制每位满10进一,而二进制则是满2进一,例如:二进制 0101 加上 0001,应该是 0102,但由于满了2,所以要向前进一,那么就是 0110。
二进制转十进制
言归正传,二进制想要转十进制,我们得知道二进制每一位表达十进制的多少。
这里,我们用举十进制的例子来求共式。
首先,十进制的 618=8×1+1×10+6×100618=8\times 1 + 1 \times 10 + 6 \times 100618=8×1+1×10+6×100,但这证明了什么呢?
其实不难发现,我们从最低位(也就是个位)开始,乘数为1,每高了一位就乘十,总结一下就是:8×100+1×101+6×1028 \times 10^0 + 1 \times 10^1 + 6 \times 10^28×100+1×101+6×102。
发现了吗?每个十进制都符合:nnn 的个位 ×10k−(k−1)+n\times 10^{k-(k-1)} + n×10k−(k−1)+n 的十位 ×10k−(k−2)+…\times 10^{k-(k-2)} + …×10k−(k−2)+… …+n… + n…+n 的最高位 ×10k−1\times 10^{k-1}×10k−1。(kkk 为 nnn 的位数)
我们把这个公式进化一下,让它通用于任何进制,就变成了:a[k−1]×mk−(k−1)+a[k−2]×mk−(k−2)+…a[k-1] \times m^{k-(k-1)} + a[k-2] \times m^{k-(k-2)} + …a[k−1]×mk−(k−1)+a[k−2]×mk−(k−2)+… …+a[1]×mk−1… +a[1] \times m^{k-1}…+a[1]×mk−1。(其中 a[i]a[i]a[i] 表示 nnn 的第 iii 位,kkk 为 nnn 的位数,mmm 为 nnn 的进制)
我们只要把 m=2m = 2m=2 带入公式就行了。
十进制转二进制
十进制转二进制我们一般用短除法,就是分解质因数和求最大公因数还有最小公倍数的那个。
首先,我们把想要换算的十进制除以2,我们会得到一个商和余数。把商写在短除号下面,余数写在被除数右边,用三个点分开,直到被除数小于除数为止。(如下图)
然后把余数从下往上写下来,就是:10011,这就是19的二进制了。
我们还可以用刚才的方法验证一下(这里乘数为零的省略):1×20+1×21+1×24=1+2+16=191 \times 2^0 + 1 \times 2^1 + 1 \times 2^4 = 1 + 2 + 16 = 191×20+1×21+1×24=1+2+16=19。
总结
二进制并不是很难,主要靠理解它的基本概念和性质。
结束
整篇文章到这里就结束了,如果你觉得文章写得好的话,别忘了点个赞哦!Bye~~~