二分查找变体 - 上下边界问题(eg. 第一个大于,最后一个大于)

1. 二分查找:如果找到key,结束循环

如果找到key,结束循环。返回mid。
如果找不到key,最终的结束状态会是right < left,并且right + 1 = left。返回-1。

 public static int binarySearch(int[] nums,int target,int left, int right) {
        //循环条件
        while (left <= right) {
            //计算mid
            int mid = left + ((right - left) >> 1);
            if (nums[mid] == target) {
                return mid;
            }else if (target > nums[mid]) {
                //target在右边
                left  = mid + 1;
            } else {
                //target在左边
                right = mid - 1;
            }
        }
        //边界情况:没有找到该元素,返回 -1
        return -1;
    }

2. 变种:找到key并不结束循环,最终总是因为right < left结束循环

当数组中不存在key时或找到key并不结束循环,最终的结束状态会是right < left,并且right + 1 = left。
当数组中存在key时,根据二分区间选择的不同,这里又分为两种情况:
在这里插入图片描述
1. 比较符号和返回值的变化:

左边情况:target <= nums[mid] 即:等于情况合并到target < nums[mid] right = mid - 1
1)用于找target下边界(第一个target)或第一个大于等于target的值:return left;
2)最后一个小于target的值:return right;

右边情况:target >= nums[mid] 即:等于情况合并到target > nums[mid] left = mid + 1
1)用于找target上边界(最后一个target)即最后一个小于等于target的值:return right;
2)第一个大于target的值:return left;

主体只要分情况更改 target ?= nums[mid] 和return left/right即可。

2. 边界情况的判断:

有时题意会有找不到的边界情况,此时返回-1,要注意边界情况的判断:

1)查找target的上下边界,如不存在返回[-1, -1]

		 int upper = upperBound(nums,target); //return right
         int low = lowerBound(nums,target);  //return left
         //边界条件:不存在的情况
         if (upper < low) {
             return new int[]{-1,-1};
         }
         return new int[]{low,upper};

2)查找第一个与target相等的元素,如不存在返回-1

 	   //arr[right] < key <= arr[left]
       //right是最后一个小于key的
       //left是第一个大于等于key的
       if (left < nums.length && nums[left] == target) {
           return left;
       }
       return -1;

3)查找最后一个与target相等的元素,如不存在返回-1

    //arr[right] <= key < arr[left]
    //right是最后一个小于等于key的
    //left是第一个大于key的
    if (right >= 0 && nums[right] == target) {
        return right;
    }
    return -1;

3. 总结

 public static int binarySearch(int[] nums,int target,int left, int right) {
        //循环条件
        while (left <= right) {
            //计算mid
            int mid = left + ((right - left) >> 1)if (target ? nums[mid]) { //#### 1
                //target在右边
                left  = mid + 1;
            } else {
                //target在左边
                right = mid - 1;
            }
        }
        //####2: 在查找第一个或最后一个与target相等的元素时,要加上if判断
        return ?; //####3: return left or right
        
        //没有找到该元素
        return -1;
    }

在这里插入图片描述

比较符号:左边情况 <=,右边情况 <

返回值:左边情况 right,右边情况 left

边界情况:return -1

reference:
https://www.cnblogs.com/gongpixin/p/6761389.html

核心思想:一个有 序队列中,所有元素都可以凭自己为分界线作为基准,在此前或此后的元素都大于他或小于他。为了方便理解,我们选择一个从小到大排列的队列。 eg.有序队列:1 2 3 4 5 6 7 8 9,此次我们抽取5作为基准元素,可以看到在5之前的元素都小于它,在5之后的元素都大于他。 这显然不是什么新奇的特征,但它仍然可以成为一种算法。 可以看到其中的要素就是“基准元素”。 与其他排序算法不同的是,这个算法的个人英雄主义气息十分浓厚,所有元素必须绕着它来转。 算法实现: 现在我们拥有一个乱 序的队列 1 在排头和排尾设置指针,以便历遍所有元素。 2 事实上,若是在现实世界,我们完全可以随机抽取一个数字作为基准元素:由于未知各种元素间的大小关系,那么此时所有元素地位等价。这是因为我们我们的大脑可以几乎零成本的随意变更算法规则。 3 但这是计算机,他需要一个精妙的,更加固定的,不轻易改变的算法设计。既然我们已经令指针在排头和排尾了,若是随机选取基准元素,我们又该如何通过这个基准元素确定其他元素的位置呢?要知道在排序后,这个基准元素的位置极大可能是会被改变的。显然,我们需要把未知变为已知。什么东西的位置是已知的?很简单,我们的指针位置是已知的,那我们令基准元素附着在指针上不就成了。这里有两个指针的位置,我更喜欢把左边指针的位置所指的元素选取为基准元素。 4 将指针设为先后移动的结构,则一定存在某一次移动使得两个指针的位置重叠,此时这个位置就是基准元素应该在的位置。 5 排列顺序:为了不那么容易犯错,我们使用更日常一些的从小到大排序来作为我们的排序方式。 6 移动逻辑:判断左右指针所指数值大小来判断是否交换。初始状态为左指针指向基准元素,期望的排列顺序为由小到大。在后续的指针移动中,指向基准元素的指针不移动,另一个指针向着基准元素的方向移动,并进行下一次的比较。 7 当完成一整轮比较后,现在,处于基准元素前的元素都比他小,处于基准元素之后的元素都比他大。但这个时候我们并没有把所有元素进行一个由小到大的排序,第一轮的操作仅仅只是把所有元素以基准元素为分界线的分类而已。 8 所以我们需要进行多轮的分类,每一次的分类都是在固定这个基准元素的位置,基准元素不会再被移动,所以,当每个元素都被分好类后,这个队列就算被排好序了。 9 第二轮的时候,我们重置指针,把没排序的元素最左边置上一个指针,并从左到右直至碰见基准元素前的最右端置一个指针,并进行第二轮循环,以此类推,直至所有元素都被分类为止。 10 由于题目要的是某个位置的最大元素,而分类过后的元素位置是固定的,也就是说:当固定下来的位置与输入所需的位置重合,则直接输出该位置的元素,避免浪费计算资源。 ———————————————— 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 原文链接:https://blog.csdn.net/P_18_/article/details/149713149
最新发布
07-29
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值