Agent平台-RAGFlow(1)-介绍

RAGFlow是什么

RAGFlow 是一款基于深度文档理解构建的开源 RAG(Retrieval-Augmented Generation)引擎。RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程,结合大语言模型(LLM)针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。
支持知识库分解、主流大语言模型平台接入(线上如 openAI、硅基流动、通义千问等,线下如ollama)、Agent工作流创建,是一个RAG工作流低代码平台。
git链接

优势

  1. 更新快,一直都有更新和大量用户使用
  2. 支持二次开发
  3. 合理配套的API接口,对个人友好

使用展示

进入demo网站:https://demo.ragflow.io/

  1. 选择使用的模型(可以使用硅基流动上提供的免费模型测试)
    在硅基流动找到模型和API文档即可:
    在这里插入图片描述

  2. 在RAGFlow里面选择聊天模型和embedding模型即可,注意:必须都要选择!
    在这里插入图片描述
    在这里插入图片描述

  3. 在知识库界面可以导入知识库
    在这里插入图片描述
    选取解析文档的模型:在这里插入图片描述
    然后新增文件上传并解析就可以用了。在这里插入图片描述

  4. 创建聊天助手,记得上传知识库
    在这里插入图片描述
    5.聊天,可利用到知识库
    在这里插入图片描述

<think>我们正在处理关于RAGFlow的查询。根据用户的问题“请问ragflow-main是什么”,我们需要提供一个清晰的解释。引用[1]提供了RAGFlow的基本信息:它是一个开源项目,由Infiniflow开发,用于构建知识库和问答系统。官网和GitHub链接都已给出。引用[2]是关于如何启动RAGFlow服务器的Docker命令。引用[3]是一个Docker拉取镜像时的错误示例,可能对当前问题帮助不大。引用[4]详细说明了RAGFlow的一些配置参数,如相似度阈值、向量相似度权重等,以及Agent的相关信息。因此,我们可以将RAGFlow定义为一个开源的RAG(Retrieval-Augmented Generation)引擎,用于构建企业级私有知识库和智能问答系统。它支持多种格式的文档,并提供了强大的文本处理和检索功能。根据这些信息,我们可以组织回答如下:1.首先解释RAGFlow是什么,它的主要功能和用途。2.然后简要说明如何获取和部署(例如通过Docker)。3.最后可以提及它的主要特点或优势。同时,按照指令要求,我们需要生成相关问题。注意:回答中引用的内容需要添加引用标识。</think>### RAGFlow 是什么? RAGFlow 是一个开源的 **RAG(Retrieval-Augmented Generation)引擎**,专为构建企业级私有知识库和智能问答系统设计。它结合了文档解析、语义检索和大语言模型(LLM)技术,支持从多种格式的文档(如 PDF、Word、Excel 等)中提取结构化信息,并通过自然语言交互实现精准问答[^1]。 #### 核心功能: 1. **多格式文档解析** 支持解析复杂文档(含表格、图表、公式),保留原始布局和语义结构。 2. **混合检索机制** 采用 **关键词相似度 + 向量相似度** 的混合评分系统(默认向量权重 $0.3$),提升检索准确性[^4]。 3. **智能问答** 用户可通过自然语言提问,系统自动过滤低相似度文本块(默认阈值 $0.2$),仅将相关片段输入 LLM 生成答案[^4]。 4. **灵活部署** 提供 Docker 容器化部署方案,支持私有化部署: ```bash docker pull swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow:dev docker compose -f docker-compose-CN.yml up -d ``` [^2] #### 典型应用场景: - 企业内部知识库(如技术文档、产品手册查询) - 法律/金融领域的合同与报告分析 - 教育行业的教材问答系统 - 科研文献智能检索 > RAGFlow 由 [Infiniflow](https://github.com/infiniflow) 团队开发,代码已在 GitHub 开源([项目地址](https://github.com/infiniflow/ragflow))[^1]。 --- ### 相关问题 1. RAGFlow 如何平衡检索效率与准确性? 2. 部署 RAGFlow 时遇到 Docker 拉取超时(如 `Error response from daemon...`[^3])该如何解决? 3. RAGFlow 的 "自由级别"(即兴/精确/平衡模式)对 LLM 输出有何具体影响[^4]? 4. 如何调整相似度阈值和前 $N$ 个文本块数量以优化问答效果?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值