flink分区与算子链

文章详细介绍了Flink中的各种分区策略(如GlobalPartitioner、RebalancePartitioner等),以及何时OperatorChain会形成算子链,条件包括并行度匹配、单一输入节点、同slotgroup和forward分区等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

flink 分区策略

  1. GlobalPartitioner 数据会被分发到下游算子的第一个实例中进行处理
  2. RebalancePartitioner 数 据会 被循 环发 送到 下 游的 每一 个实 例中 进 行处 理。
  3. RescalePartitioner 这种分区器会根据上下游算子的并行度,循环的方式输出到下游算子的每个实例。
  4. BroadcastPartitioner 广播分区会将上游数据输出到下游算子的每个实例中 。 适 合 于大数据集和小数据集做Jion的场景。
  5. ForwardPartitioner 用于将记录输出到下游本地的算子实例。它要求上下游 算 子 并 行 度 一 样 。 简单的说 , ForwardPartitioner 用来做数据的控制台打印 。(也是chain算子的条件)
  6. KeyGroupStreamPartitioner Hash 分区器。会将数据按 Key 的 Hash 值输出到下游算子实例中。
  7. CustomPartitionerWrapper 用户自定义分区器。需要用户自己实现 Partitioner 接口,来定义自己的分区逻辑

RescalePartitioner这里有点难以理解,假设上游并行度为 2,编号为 A 和 B。下游并行度为 4,编号为 1,2,3,4。那么 A 则把数据循环发送给 1 和 2,B 则把数据循环发送给 3 和 4。假设上游并行度为 4,编号为 A,B,C,D。下游并 行度 ,编号为 1,2。那么 A 和 B 则把数据发送给 1,C 和 D 则把数据发送给 2。

flink 什么情况下才会把 Operator chain 在一起形成算子链?

  • 上下游的并行度一致
  • 下游节点的入度为 1 (也就是说下游节点没有来自其他节点的输入)
  • 上下游节点都在同一个 slot group 中
  • 两个节点间数据分区方式是 forward(参考理解数据流的分区) 否则都是all_to_all
  • 上下游节点的 chain 策略为 ALWAYS
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Direction_Wind

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值