YOLOv8改进模块代码大集合(基于pytorch库)

本文汇总了使用PyTorch实现的各种注意力机制代码,包括EMA、SimAM、BLRA等改进模块和MobileViTAttention、CBAM等主流主干模型,为深度学习开发者提供了丰富的参考资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

需要的私信哦

注意力机制代码大集合(基于pytorch库)
EMA , SimAM , BLRA , TA , CoordAtt , BAM , EfficientAttention , LSK , SE , CPCA , MPCA , deformable_LKA , EffectiveSE , LSKA , SNA , DA , A2 , Biformer , CBAM , CloAttention , CoTAttention , ECA , GAM , GC , GE , MobileViTAttention , ParNetAttention , PolarizedSelfAttention , S2 , SSA , SGE , ShuffleAttention , SK

各种改进模块、主干大合集

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dneccc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值