1074: 矩阵取数II(动态规划)

本文介绍了一个基于动态规划的算法,用于解决在给定矩阵中从左上角到任意位置的最大路径得分问题。通过逐步初始化边界并计算每个位置的最大得分,最终形成一个完整的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

PIPI想要大家了解基本的动态规划,所以它不知道从哪弄来了一个n*m的矩阵,矩阵每个元素是一个整数,你现在在左上角(第一行第一列),每次只能朝右或者下走到相邻的位置,不能走出矩阵。走过的数的总和作为你的得分。现在PIPI想知道它去每一个格子的最大得分是多少?
怎么样,是不是依然很简单呢?

输入

多组输入。 
第一行为两个整数n,m(1<=n,m<=500) 
接下来n行,每行m个数字,每个数字都在int范围内。( ̄▽ ̄)" 

输出

对于每组数据,输出一个n*m的矩阵。

样例输入

3 4
1 2 3 4 
1 2 8 2
1 1 1 1

样例输出

1 3 6 10
2 5 14 16
3 6 15 17
#include<iostream>
using namespace std;
int main(void){
	int n,m;
	while(scanf("%d%d",&n,&m)!=EOF){
		//存储二维矩阵 
		int f[501][501];
		for(int i=1;i<=n;i++){
			for(int j=1;j<=m;j++){
				scanf("%d",&f[i][j]);
			}
		}
		long long dp[501][501];
		//开始位置 
		dp[1][1]=f[1][1];
		//第一列初始化 
		for(int i=2;i<=n;i++){
			dp[i][1]=dp[i-1][1]+f[i][1];
		}
		//第一行初始化 
		for(int j=2;j<=m;j++){
			dp[1][j]=dp[1][j-1]+f[1][j];
		}
		//其他位置计算 
		for(int i=2;i<=n;i++){
			for(int j=2;j<=m;j++){
				dp[i][j]=max(dp[i][j-1],dp[i-1][j])+f[i][j];
			}
		}
		for(int i=1;i<=n;i++){
			for(int j=1;j<m;j++){
				printf("%lld ",dp[i][j]);
			}
			printf("%lld\n",dp[i][m]);
		} 
	}
	return 0;
}

 

<think>我们有一个40x40的QUBO矩阵,需要将其转换为dimod库兼容的格式。dimod是一个用于处理二次无约束二值优化(QUBO)模型的Python库。 在dimod中,QUBO问题通常表示为一个字典,其中键是变量对(例如(i, j)),值是对应的二次项系。同时,线性项可以视为对角元素(即(i, i))或者使用BinaryQuadraticModel(BQM)对象来表示。 步骤: 1. 理解QUBO矩阵:一个QUBO矩阵Q是一个上三角矩阵(或下三角,但通常以上三角形式表示),其中对角线元素表示线性项,非对角线元素表示二次项。因此,对于一个40x40的矩阵,元素Q[i][j](其中i<=j)表示变量x_i和x_j的系(当i=j时为线性项,i≠j时为二次项)。 2. dimod的BQM对象:我们可以使用dimod的BinaryQuadraticModel类来表示QUBO问题。我们可以通过传入一个字典(包含二次项系)和线性项(可以包含在同一个字典中,也可以单独指定)来创建BQM对象。但更简单的方法是直接使用矩阵构建。 3. 转换方法:dimod提供了多种构建BQM的方式。我们可以使用`dimod.BinaryQuadraticModel.from_qubo(Q_dict)`,其中Q_dict是一个字典,键为二元组(i, j),值为系。注意,这个字典应该只包含上三角部分(即i<=j),并且当i=j时,表示线性项。 4. 具体步骤: - 遍历QUBO矩阵的上三角部分(包括对角线)。 - 将每个非零元素(或者所有元素,但零元素可以省略)添加到字典中,键为(i, j),值为矩阵中对应的元素。 - 注意:矩阵索引从0开始,变量名可以是字符串(如'x0','x1')或整(0,1,...)。在dimod中,变量标签可以是任意可哈希类型,通常使用整或字符串。 5. 使用`dimod.BinaryQuadraticModel.from_qubo`:这个函接受一个字典,该字典的键是变量对,值是对应的二次项系。注意,这个函要求字典中的键满足i<=j,并且线性项(当i=j)也包含在内。 6. 另一种方法:我们也可以先创建一个空的BQM对象,然后通过循环添加项。但使用from_qubo更直接。 假设我们有一个40x40的numpy组`Q`,我们想将其转换为BQM对象。 示例代码: ```python import numpy as np import dimod # 假设Q是一个40x40的numpy组,表示QUBO矩阵 # 这里我们创建一个随机的Q矩阵作为示例(实际中应使用用户给定的矩阵) n = 40 Q = np.random.rand(n, n) # 由于QUBO矩阵通常是对称的(或上三角),我们上三角部分(包括对角线)来构建字典 # 注意:如果矩阵不是对称的,通常我们只上三角部分,因为QUBO模型中二次项系是对称的(即x_i x_j的系等于x_j x_i的系,所以只一次) # 构建字典 qubo_dict = {} for i in range(n): for j in range(i, n): # 上三角部分(包括对角线) if Q[i, j] != 0: # 如果系不为0才添加,但也可以添加0,不过通常0可以省略 qubo_dict[(i, j)] = Q[i, j] # 使用from_qubo创建BQM对象 bqm = dimod.BinaryQuadraticModel.from_qubo(qubo_dict) # 打印BQM信息以验证 print(bqm) ``` 注意:上面的代码中,我们假设变量标签是整(0到39)。如果用户希望变量标签是字符串(如'0','1'或'x0','x1'),则可以在构建字典时进行转换,例如: ```python qubo_dict[('x{}'.format(i), 'x{}'.format(j))] = Q[i, j] ``` 但是,dimod允许变量标签为任意可哈希类型,所以整或字符串都可以。 另外,如果矩阵不是对称的,我们只上三角部分,这符合QUBO矩阵的常规表示(即只考虑i<=j的部分)。如果矩阵是下三角,我们可以调整循环,或者先转换为上三角(例如,将下三角的元素加到上三角并置零下三角)。 如果用户提供的矩阵是完整的对称矩阵(即包含上下三角),那么我们可以只上三角部分(包括对角线)以避免重复。 最后,我们创建了BQM对象,它就可以用于dimod的求解器(如模拟退火、精确求解器等)进行求解。 相关问题: 1. 如何将QUBO矩阵转换为BQM对象后,使用dimod中的模拟退火求解器求解? 2. 在构建QUBO字典时,为什么只需要上三角部分(包括对角线)? 3. 如果QUBO矩阵不是对称的,应该如何处理? 4. 除了使用from_qubo方法,还有哪些方式可以在dimod中构建QUBO模型? 5. 如何将BQM对象转换为QUBO矩阵形式?</think>### 如何将 40×40 QUBO 矩阵转换为 dimod 兼容格式 在量子计算和优化问题中,dimod 是 D-Wave 提供的 Python 库,用于处理二次无约束二值优化(QUBO)模型。以下是转换步骤: #### 1. **理解 QUBO 矩阵结构** - 一个 40×40 QUBO 矩阵 $Q$ 的元素 $Q_{ij}$ 表示变量 $x_i$ 和 $x_j$ 的二次项系($i \leq j$) - 对角元素 $Q_{ii}$ 是线性项系(当 $i=j$ 时) - 矩阵需满足对称性:$Q_{ij} = Q_{ji}$ #### 2. **转换方法** 使用 `dimod.BinaryQuadraticModel` 类直接加载矩阵: ```python import numpy as np import dimod # 假设 Q 是 40x40 的 QUBO 矩阵(NumPy 组) Q = np.array(...) # 替换为实际矩阵 # 转换为 dimod 的 BQM 对象 bqm = dimod.BinaryQuadraticModel.from_qubo(Q, offset=0.0) # 验证格式 print("变量:", len(bqm.variables)) # 应输出 40 print("模型类型:", bqm.vartype) # 应输出 dimod.BINARY ``` #### 3. **关键注意事项** 1. **索引要求**: - 矩阵索引必须从 0 开始(0 到 39) - 如果使用自定义标签(如字符串),需构建系字典: ```python qubo_dict = {(i, j): Q[i][j] for i in range(40) for j in range(i, 40)} bqm = dimod.BinaryQuadraticModel.from_qubo(qubo_dict) ``` 2. **对称性处理**: - 若矩阵不对称,需先转换为对称形式: $$Q_{\text{sym}} = \frac{1}{2}(Q + Q^T)$$ 3. **稀疏矩阵优化**: - 对于稀疏矩阵,使用 COO 格式提升效率: ```python from scipy.sparse import coo_matrix Q_sparse = coo_matrix(Q) entries = {(i, j): Q_sparse.data[k] for k, (i, j) in enumerate(zip(Q_sparse.row, Q_sparse.col)) if i <= j} bqm = dimod.BinaryQuadraticModel.from_qubo(entries) ``` #### 4. **验证转换结果** ```python # 检查二次项系 for (i, j), coeff in bqm.quadratic.items(): assert np.isclose(coeff, Q[min(i,j)][max(i,j)]) # 检查线性项系 for i in range(40): assert np.isclose(bqm.linear[i], Q[i][i]) ``` #### 5. **应用示例** 转换为 BQM 后可直接用于求解: ```python from dimod import SimulatedAnnealingSampler sampler = SimulatedAnnealingSampler() sampleset = sampler.sample(bqm, num_reads=1000) print(sampleset.first.sample) # 输出最优解 ``` ### 常见问题解决 - **维度错误**:确保矩阵严格为 40×40,使用 `Q.shape == (40, 40)` 验证 - **非对称警告**:通过 `Q = (Q + Q.T)/2` 强制对称 - **性能优化**:对大型矩阵使用 `dimod.BinaryQuadraticModel.from_numpy_matrix(Q)` > 此方法适用于任意尺寸的 QUBO 矩阵转换,核心是保持矩阵结构与变量索引的一致性[^1][^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值