数据挖掘算法原理与实践第5关:生成多项式特征

数据挖掘中,为了增加模型复杂度和捕捉特征间非线性关系,常常需要生成多项式特征。sklearn库提供了PolynomialFeatures工具,用于创建特征的交互项,例如将数据转换为二项式特征。在编程任务中,需要实现该功能,当输入数据为二维数组时,能够正确生成多项式特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本关任务:利用sklearn生成多项式特征。

为什么需要多项式特征

在数据挖掘中,获取数据的代价经常是非常高昂的。所以有时就需要人为的制造一些特征,并且有的特征之间是有关联的。生成多项式特征可以轻松的为我们获取更多的数据,并获得特征的更高维度和互相间关系的项且引入了特征之间的非线性关系,可以有效的增加模型的复杂度

PolynomialFeatures

在这里插入图片描述

代码实现:

import numpy as np
from sklearn.preprocessing import PolynomialFeatures
data = np.arange(6).reshape(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值