限流是一种常见的应对高并发场景的手段,它可以控制系统的处理速率,避免因大量请求的到来而导致系统资源耗尽或服务质量下降。在Redis中,我们可以使用多种方式来实现限流。本文将介绍几种常见的Redis限流实现方式,并提供相应的源代码示例。
- 计数器算法
计数器算法是一种简单直观的限流方式。它通过记录单位时间内的请求次数,当请求次数超过设定的阈值时,拒绝后续的请求。在Redis中,我们可以使用有序集合(Sorted Set)来实现计数器算法。
以下是一个使用计数器算法实现限流的Redis源代码示例:
import redis
# 连接Redis
r = redis.Redis(host='localhost', port=6379)
# 定义限流参数
limit = 100 # 阈值
duration = 60 # 时间窗口(单位:秒)
# 获取当前时间戳
current_time = int(time.time())
# 移除时间窗口之外的记录
r.zremrangebyscore('requests', '-inf', current_time - duration)
# 获取当前时间窗口内的请求数量
request_count = r.zcard('requests')
# 判断请求数量是否超过阈值
if request_count >= limit:
print("请求超过限流阈值,拒绝处理")
else:
# 处理请求
print("处理请求")
# 记录当前请求
r.zadd('requests', {current_time: current_time})