Redis限流实现方式介绍及源代码示例

63 篇文章 ¥59.90 ¥99.00
限流在高并发场景中至关重要,防止系统资源耗尽。本文探讨了Redis中的计数器、漏桶和令牌桶三种限流算法,并提供了源代码示例。通过有序集合实现计数器,利用List数据结构实现漏桶和令牌桶,适用于不同业务需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

限流是一种常见的应对高并发场景的手段,它可以控制系统的处理速率,避免因大量请求的到来而导致系统资源耗尽或服务质量下降。在Redis中,我们可以使用多种方式来实现限流。本文将介绍几种常见的Redis限流实现方式,并提供相应的源代码示例。

  1. 计数器算法
    计数器算法是一种简单直观的限流方式。它通过记录单位时间内的请求次数,当请求次数超过设定的阈值时,拒绝后续的请求。在Redis中,我们可以使用有序集合(Sorted Set)来实现计数器算法。

以下是一个使用计数器算法实现限流的Redis源代码示例:

import redis

# 连接Redis
r = redis.Redis(host='localhost', port=6379)

# 定义限流参数
limit = 100  # 阈值
duration = 60  # 时间窗口(单位:秒)

# 获取当前时间戳
current_time = int(time.time())

# 移除时间窗口之外的记录
r.zremrangebyscore('requests', '-inf', current_time - duration)

# 获取当前时间窗口内的请求数量
request_count = r.zcard('requests')

# 判断请求数量是否超过阈值
if request_count >= limit:
    print("请求超过限流阈值,拒绝处理")
else:
    # 处理请求
    print("处理请求")

# 记录当前请求
r.zadd('requests', {current_time: current_time})
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值