自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 狗的品种识别——基于PyTorch和ResNet的深度学习项目

乖狗狗是谁?谁喜欢挠耳朵呢?看来那些复杂精密的深度神经网络也并非无所不能。不过,它们或许能解答我们遇到四条腿新朋友时都会问的那个经典问题:这到底是只什么品种的可爱小狗呢?由此,本项目诞生了。在这项目中,我们使用了ImageNet数据集中严格筛选的犬类子集,用以练习细粒度图像分类。面对120个犬种且每个品种训练图像有限的挑战,我们将交出我们的答卷。

2025-06-30 21:53:56 751

原创 深入探索嵌入式系统开发:从LED控制到物联网集成

本文提供了一个简单的LED控制程序示例,但实际的开发可能会更加复杂。根据实际需求和目标平台,可以扩展这些概念和示例,以构建更复杂的嵌入式应用。在进行实际开发时,请始终参考硬件文档和开发工具的说明。

2025-06-07 15:48:39 740

原创 嵌入式系统入门实战:从基础概念到应用开发全解析

嵌入式系统是专为特定任务设计的专用计算机系统,具备低硬件资源、高可靠性与实时性,核心组件包括微控制器(如ARM Cortex-M)、实时操作系统(如FreeRTOS)及外设接口,广泛应用于工业控制、汽车电子、物联网等领域,其开发需结合硬件配置与软件工程能力,未来将深度融合AIoT、功能安全与无线更新等技术。

2025-06-07 15:28:35 263

原创 Java线程池:深入解析与实战应用指南

本文全面解析Java线程池,涵盖其概念优势、核心组件(如Executor接口、ThreadPoolExecutor类等)、工作流程、创建配置方法、监控管理技巧及最佳实践。线程池能复用线程,提升性能与资源利用率。通过合理配置参数、处理异常、避免任务堆积等策略,可确保线程池高效稳定运行,为Java高并发开发提供有力支持。

2025-05-26 21:54:27 950

原创 数据分析基础之 - 异常值检测和处理

文章主要介绍了 Python 数据分析中异常值的检测和处理。先解释了异常值的概念,接着列举多种检测方法,如基于统计、聚类、模型等。然后提到异常值的处理方法,包括删除记录、视为缺失值、平均值修正、不处理等。

2024-11-02 17:13:59 1522

原创 Linux 文件系统介绍

本文是对 Linux 文件系统的介绍,包括数据需存储在硬盘驱动器的原因,文件系统的定义、功能、目录结构、统一结构、类型、挂载等方面。讨论了存储成本、元数据结构、安全模式等,还提及不同操作系统文件系统的差异及相关问题的解决案例。

2024-11-01 15:58:58 957

原创 Java SPI机制详解

SPI 全称为 (Service Provider Interface) ,是JDK内置的一种服务提供发现机制。SPI是一种动态替换发现的机制, 比如有个接口,想运行时动态的给它添加实现,你只需要添加一个实现。我们经常遇到的就是java.sql.Driver接口,其他不同厂商可以针对同一接口做出不同的实现,mysql和postgresql都有不同的实现提供给用户,而Java的SPI机制可以为某个接口寻找服务实现。类图中,接口对应定义的抽象SPI接口;实现方实现SPI接口;调用方依赖SPI接口。

2024-10-29 22:08:15 695 1

原创 机器学习之决策树ID3

机器学习中,决策树是一个预测模型;代表对象属性和对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉表示某个可能的属性,每个叶子节点则对应从根节点到该叶子节点所经历的路径所表示的对象的值。决策树只有单一输出,若想要复数输出,可以建立独立的决策树以处理不同输入。数据挖掘中常用到决策树,可以用于分析数据,也可以用于预测。

2024-06-12 21:39:28 773 1

原创 「python」sklearn中的逻辑回归模型

在逻辑回归模型中,对于需要手动调参的参数的数量比较少,penalty、solver、multi_class一般通过相应任务和使用场景就可以优先调好,而参数C我们则可以通过画学习曲线的方式来进行调整,但在训练模型之前我们可能会先基于Embedded嵌入法进行特征选择,由于我们要基于加上正则化的模型对特征进行选择,这时我们一般先对参数C绘制学习曲线来优先确定参数C的取值以得到更好的模型,然后基于使用该参数的模型对嵌入法绘制学习曲线以确定保留特征个数。

2024-06-12 20:59:02 1062

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除