自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(19)
  • 收藏
  • 关注

原创 深度学习(五):正则化:约束模型的复杂度

正则化是机器学习中防止模型过拟合的关键技术,通过约束模型复杂度来提升泛化能力。主要方法分为三类:1)参数正则化(如L1/L2正则化),通过在损失函数中添加参数惩罚项限制参数大小;2)结构正则化(如Dropout、早停),随机关闭部分神经元或提前终止训练;3)数据正则化(如数据增强、批量归一化),通过扩充数据或标准化处理改善数据分布。这些方法从不同角度降低模型复杂度,避免模型过度拟合训练数据中的噪声,从而提升对新数据的预测能力。

2025-08-26 17:33:58 572

原创 深度学习(四):优化器

本文介绍了机器学习中常用的优化器算法及其实现原理。主要内容包括:1) 随机梯度下降(SGD)通过加入随机数摆脱局部最优;2) 牛顿法直接更新参数;3) 多项式衰减和指数衰减两种学习率调整方法;4) 动量法利用历史梯度信息加速收敛;5) RMSprop自适应调整学习率;6) Nesterov加速梯度法改进动量法;7) AdaGrad根据梯度历史动态调整学习率;8) Adam算法综合RMSprop和动量法优点,是当前最常用的优化器之一。每种方法都配有数学公式和Python代码示例,展示了参数更新过程。这些优化器

2025-08-26 16:30:39 430

原创 深度学习(三):PyTorch 损失函数:按任务分类的实用指南

PyTorch损失函数选择指南:根据任务类型匹配最佳方案。回归任务可选MSELoss(标准回归)或SmoothL1Loss(含异常值);多分类推荐CrossEntropyLoss(自带log_softmax),二分类用BCEWithLogitsLoss(自带sigmoid);特殊任务如语音识别用CTCLoss。关键要匹配任务类型和模型输出形式,注意激活函数搭配要求以避免常见错误。

2025-08-26 09:48:56 428

原创 深度学习(二):数据集定义、PyTorch 数据集定义与使用(分板块解析)

简单说,数据集就是 AI “学习时用的素材库”—— 就像我们上学要靠课本、练习册积累知识,AI 要学会识别图片、预测结果,也得靠一堆数据 “喂” 进去,这些用来教 AI 的所有数据,合起来就是数据集。:自定义数据集的 “模板”,必须实现 3 个方法才能用:批量加载数据的 “工具”,解决单条取数据效率低的问题:划分数据集的 “助手”,用于拆分训练集 / 验证集要让 PyTorch 识别我们的数据集,必须创建一个类继承Dataset,并实现3 个强制方法__init____len__。init定义数据集。

2025-08-25 17:02:18 627

原创 深度学习(一):全连接神经网络(AI 的「全员协作团队」)

全连接神经网络是AI中的基础结构,通过全连接层实现信息处理。其核心特点是前一层的每个神经元都与后一层的每个神经元直接连接,形成类似"全员协作团队"的结构。PyTorch中的nn.Linear通过矩阵运算高效实现这种连接,包含权重和偏置两个关键参数。多层感知机(MLP)由输入层、隐藏层和输出层组成,通过增加层数和神经元数量来提升模型处理能力。全连接层的主要作用是增加模型可学习参数,实现精准分类输出。计算参数量时,总参数量=输入特征数×输出特征数+输出特征数。这种结构简单有效,是深度学习的基

2025-08-25 16:00:15 983

原创 RAG 教程(二):RAG文本加载

本文介绍了RAG系统中文本加载的基础操作,重点讲解如何使用LangChain工具加载多种格式文件。主要包括:TXT文件的TextLoader加载、CSV文件的CSVLoader处理、PDF文件的PyPDFLoader分页处理、Markdown文件的UnstructuredMarkdownLoader解析、JSON文件的JSONLoader字段提取,以及HTML文件的两种加载方式(UnstructuredHTMLLoader和BSHTMLLoader)。每种加载器都能将原始文件转换为包含文本内容和元数据的Do

2025-08-22 17:25:16 991

原创 LangChain教程(全):从入门到起飞(零基础快速上手、示例代码)

本教程从零基础快速入门LangChain框架,通过示例代码讲解核心功能。首先介绍如何调用大模型,对比OpenAI(文本补全)和ChatOpenAI(对话补全)两种接口的使用场景与区别。然后重点讲解Prompt模板功能,包括基础PromptTemplate和对话专用ChatPromptTemplate,帮助开发者实现结构化输入、避免提示词注入等问题。教程采用"边学边做"方式,每个知识点都配有可运行的小项目,强调实践应用。通过分离提示词结构与动态内容,使大模型调用更规范、可维护,适合构建聊天

2025-08-21 19:57:29 842

原创 RAG 教程(一):检索与生成的智能融合(工作流程)

RAG(检索增强生成)技术通过检索器与生成器的协同工作,将外部知识库与大语言模型相结合,实现更精准的信息输出。检索器负责从知识库中快速定位相关内容,生成器则依据检索结果和自身语言能力生成回答。该技术解决了大模型的时效性、专业性和"幻觉"问题,通过更新知识库即可获取最新信息,无需重新训练模型,在专业咨询、实时数据等场景中表现突出,实现了事实准确性与语言流畅性的统一。

2025-08-21 18:11:26 409

原创 LangChain教程(七):OutputParser(输出解析器)—— 让模型输出结构化

LangChain的OutputParser(输出解析器)可将大模型输出的非结构化文本转换为结构化数据(如JSON、列表等),解决格式不一致、信息提取困难等问题。核心功能包括格式转换、校验及与提示词协同。教程介绍了多种解析器: CommaSeparatedListOutputParser:解析逗号分隔列表; EnumOutputParser:限定输出为预定义枚举值; DatetimeOutputParser:将时间字符串转为datetime对象; StructuredOutputParser:通过R

2025-08-21 16:59:43 831

原创 LangChain教程(五):Agent代理执行器核心机制+核心机制agent_scratchpad 的作用(一图看懂)

本文揭示了Agent代理执行器的核心工作机制。代理系统通过四个关键步骤实现工具调用:1)工具注册时建立名称与函数的映射;2)将工具描述注入模型提示;3)模型分析需求并生成工具调用指令;4)执行器根据指令路由到具体工具。核心机制在于agent_scratchpad的作用,它作为对话历史记录工具调用状态,包含工具执行结果,使模型能基于已有操作继续处理而避免循环调用。这种设计通过维护工具调用上下文,实现了从决策到执行再到结果反馈的完整闭环。

2025-08-20 17:36:51 1005

原创 LangChain 教程(六):链(Chains)的进阶组合 —— 构建复杂工作流

LangChain 教程:链(Chains)的进阶组合摘要 本文介绍了如何通过LangChain的链(Chains)功能构建复杂AI工作流。主要内容包括: 链组合的核心思想:通过Runnable接口实现组件的有序组合,支持序列、并行、条件和嵌套等组合方式。 基础序列链实现: 使用"|"运算符串联多个链 示例展示了两步骤处理流程(提取关键词→生成搜索查询) 多步骤序列链演示了如何传递多个参数 条件路由链: 根据输入内容动态选择执行不同的链 提供了基于规则和模型驱动的两种路由判断方式。

2025-08-19 19:12:57 878

原创 LangChain 教程(四):工具调用(Tools)—— 让大模型拥有 “超能力”

本节将详解如何定义工具、让模型自主决定调用工具,并结合记忆组件实现带上下文的工具调用。工具调用是 LangChain 扩展大模型能力的核心机制,通过定义工具、创建代理执行器,可让模型联动外部资源解决复杂问题。使用`create_tool_calling_agent` 与 `RunnableWithMessageHistory` 的结合,使工具调用更灵活且支持上下文记忆。

2025-08-18 15:51:06 577

原创 LangChain 教程(三):记忆组件(Memory)—— 让大模型记住对话上下文

让我们的模型拥有记忆功能,LangChain 0.2.x 版本的记忆组件通过 RunnableWithMessageHistory 实现了更灵活的会话管理,结合 InMemoryChatMessageHistory、窗口记忆、摘要记忆等工具,可满足从简单对话到复杂场景的记忆需求。核心是根据对话长度和信息重要性选择合适的记忆策略,并通过 session_id 实现多用户隔离。

2025-08-18 13:00:03 1076

原创 2025上半年软考高级系统架构设计师经验分享

三次跌倒,一次上岸:普通二本生考试经验,用掉三箱咖啡、两本教材、十六篇论文底稿,终于拿下2025上半年系统架构师。本文把踩过的坑、熬过的夜、临时抱佛脚的冲刺方法,全部摊开来给你——从“Hello World”到考场的2000多字论文,只需记住一句话:集中一点,登峰造极;实在不行,再来一次。

2025-08-17 08:00:00 1244 1

原创 LangChain 教程(二):Prompt 模板 —— 结构化输入的核心工具

本文详细介绍了LangChain框架中的Prompt模板功能,重点讲解了如何通过结构化方式管理提示词,实现更灵活、可维护的大模型调用。两种核心模板类型:PromptTemplate:适用于文本补全场景(OpenAI类)ChatPromptTemplate:专为对话场景设计(ChatOpenAI类),支持多角色消息模板

2025-08-16 09:53:06 563

原创 LangChain 教程(一):引入依赖后快速调用大模型

本文详细介绍了如何在LangChain框架中通过OpenAI和ChatOpenAI两类快速调用大模型,并对比了两者的区别与适用场景。提供开箱即用的代码示例,帮助开发者快速理解LangChain调用大模型的核心方法,并做出合适的技术选型。

2025-08-16 09:46:37 390

原创 Api调用大模型教程(基于openai库、完整代码示例)

全文附完整代码示例,适合开发者快速掌握大模型 API 调用逻辑。此外,还详解了temperature(控制随机性)、top_p(调节多样性)、max_tokens(限制长度)、stop(设置停止符)等关键参数的作用与用法。

2025-08-15 11:53:28 766 2

原创 FastAPI操作教程(一眼看会)

通过本文可快速掌握 FastAPI 的异步特性、简洁语法及自动生成文档等优势,类比 SpringBoot 的 CRUD 操作逻辑,降低学习门槛。

2025-08-15 10:20:59 191

原创 SQLAlchemy 完整操作教程(2.0+ 版本)

本文是 SQLAlchemy 2.0 + 版本的完整操作教程,面向需要通过 Python ORM 框架高效操作数据库的开发者。内容涵盖核心概念(Engine、Base、Model、Session 等组件)与环境准备(安装 SQLAlchemy 及对应数据库驱动);基础操作包括数据库连接配置、数据模型定义(通过继承 Base 类映射表结构)、表结构自动创建;详解会话管理技巧,推荐使用上下文管理器自动处理会话的创建、提交、回滚与关闭,避免资源泄露;系统介绍 CRUD 核心操作(单条 / 批量新增、基础 / 高级

2025-08-15 09:24:37 852

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除