hdu5781 ATM Mechine 概率dp

本文探讨了在有限错误次数内从ATM机中取出所有资金的最优策略,并提出了一种动态规划方法来求解最小期望取款步骤。通过递归公式计算不同状态下的期望值,实现了对问题的有效求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意: 
有不超过k元钱,若取钱大于剩余,atm会报错,问在不超过w次报错下,取出所有钱的最小期望。

题解: 
设当前状态dp[i][j],i为最大钱数,j为剩余报错数, 
若i > 0、 j > 0, 
则dp[i][j] = minik=1(ik+1i+1dp[ik][j]+ki+1dp[k1][j1]+1), 
前一项为k不超过剩余的情况,后一项为超过,1为当前操作的一步。 
i = 0时为0, j=0时为无穷大。

复杂度O(k2w) 因为k<2000, 若采取二分,最坏步数为log20002, 所以w = min(w, 11), 不会超时。

#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long ll;

const int N = 2005;
const double INF = 1e12;
double f[N][16];

double cal(int k, int w)
{
    if (k == 0) return 0;
    if (w == 0) return INF;
    if (f[k][w] > 0) return f[k][w];
    double ans = INF;
    for (int i = 1; i <= k; ++i) {
        ans = min(ans, cal(i-1,w-1)*i/(k+1) + cal(k-i,w)*(k+1-i)/(k+1) + 1);
    }
    return f[k][w] = ans;
}

int main(int argc, char const *argv[])
{

    int k, w;
    while (~scanf("%d%d", &k, &w)) {
        w = min(w, 15);
        printf("%.6f\n", cal(k, w));
    }
    return 0;
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值